

Phase 2 Environmental Site Assessment, Smelter Site, Additional Investigations

Prepared for: Hydro Aluminium Kurri Kurri Pty Ltd

Prepared by: ENVIRON Australia Pty Ltd

Date: **May 2015**

Project Number: **AS130383**

Prepared by:

Authorised by:

Name:Kirsty GreenfieldName:Fiona RobinsonTitle:Environmental ScientistTitle:Manager - HunterPhone:02 4962 5444Phone:02 4962 5444

Email: kgreenfield@environcorp.com Email: frobinson@environcorp.com

Signature: Kareenfeld Date: 16/1/15 Signature: finfolio Date: 16/1/15

This document is issued in confidence to Hydro Australia Pty Ltd for the purposes of a Phase 2 Environmental Site Assessment. It should not be used for any other purpose.

The report must not be reproduced in whole or in part except with the prior consent of ENVIRON Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No information as to the contents or subject matter of this document or any part thereof may be communicated in any manner to any third party without the prior consent of ENVIRON Australia Pty Ltd.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, ENVIRON Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

© ENVIRON Australia Pty Ltd

VERSION CONTROL RECORD

Document File Name	Date Issued	Version	Author	Reviewer
AS130383_Hydro_Phase 2	13 October 2014	Draft 1	K Greenfield	F Robinson
AS130383_Hydro_Phase 2	16 January 2015	Final	K Greenfield	F Robinson
AS130383_Hydro_Phase 2_V1	16 January 2015	Final	K Greenfield	F Robinson

Contents

		Page
1	Introduction	5
1.1	Background	5
1.2	Objectives and Scope of Work	5
1.3	Project Background	5
1.4	Limitations	6
2	Site Identification	7
2.1	Site Location	7
3	Site History	8
3.1	Zoning	8
3.1.1	Current	8
3.1.2	Proposed Future Land Use	8
3.2	Landuse	9
3.3	Licences, Permits and Approvals	10
3.3.1	Planning Approvals	10
3.3.2	Environmental Protection Licence	11
3.4	Previous ENVIRON Investigations	11
3.4.1	Stage 1 of the Phase 2 ESA	11
3.4.2	Capped Waste Stockpile	13
3.4.3	Clay Borrow Pit	14
3.4.4	Ecological Risk Assessment	14
3.4.5	Health Risk Assessment	14
3.4.6	Phase 1 ESA	14
4	Site Condition and Surrounding Environment	15
4.1	Topography	15
4.2	Boundary Conditions	15
4.3	Visible Signs of Contamination	15
4.4	Visible Signs of Plant Stress	16
4.5	Presence of Drums, Wastes and Fill Material	16
4.6	Odours	16
4.7	Conditions of Buildings and Roads	17
4.8	Quality of Surface Water	17
4.9	Flood Potential	17
4.10	Local Sensitive Environment	17
5	Geology and Hydrogeology	19
5.1	Geology	19
5.2	Location and Extent of Fill	19
5.3	Borehole Logs	19
5.4	On-site Wells	20
5.5	Depth to Groundwater Table	20
5.6	Direction and Rate of Groundwater Flow	21
5.7	Direction of Surface Water Runoff	21

)	а	g	е

5.8	Background Water Quality	21
5.9	Preferential Water Courses	21
5.10	Summary of Local Meteorology	21
6	Sampling, Analysis and Quality Plan	23
6.1	Preparation of Sampling, Analysis and Quality Plan	23
6.2	Data Quality Objectives and Data Quality Indicators	27
6.3	Project Fieldwork Phase	27
6.3.1	Soil Sampling	27
6.3.2	Groundwater Monitoring Well Installation and Sampling	28
7	Quality Assurance and Quality Control	29
8	Basis for Assessment Criteria	30
8.1	Soil	30
8.2	Groundwater	33
8.2.1	Potential Beneficial Uses	34
8.2.2	Appropriate Criteria for Groundwater	34
9	Results	37
9.1	Fluoride in Soil	37
9.2	AEC 2 Anode Waste Pile	38
9.2.1	Soil	38
9.2.2	Groundwater	38
9.3	AEC 3 Refuelling Area	39
9.3.1	Soil	39
9.3.2	Groundwater	39
9.4	AEC 4 Diesel Spray Area	39
9.4.1	Soil	39
9.4.2	Groundwater	40
9.5	AEC 8 Carbon Plant	40
9.5.1	Soil	40
9.5.2	Groundwater	41
9.6	PAEC 26 Bake Furnace Scrubber	41
9.6.1	Soil	41
9.6.2	Groundwater	42
9.7	PAEC 28 Playing Fields	42
9.7.1	Soil	42
9.7.2	Groundwater	42
9.8	PAEC 29 Area East of Playing Fields	43
9.8.1	Soil	43
9.8.2	Groundwater	43
9.9	PAEC 31 Storage Area West of Pot Line 3	43
9.9.1	Soil	43
9.10	Site-Wide Assessment of Groundwater	43
10	Site Characterisation	45
10.1	Conceptual Site Model	45
10.1.1	Contamination Sources	45

		Page iii
10.1.2	Human and Ecological Receptors	46
10.1.3	Exposure Pathways	47
10.2	Further Investigations	51
10.2.1	Fluoride Impacts in Groundwater	51
10.3	Remediation	51

11 Conclusions and Recommendations

12 References 56

List of Figures

Figure 1:	Site Location Plan
Figure 2:	Smelter Site Boundary
Figure 3:	Smelter Layout
Figure 4:	AEC 2 Anode Waste Pile
Figure 5:	AEC 3 Refuelling Area
Figure 6:	AEC 4 Diesel Spray Area
Figure 7:	AEC 8 Carbon Plant
Figure 8:	AEC 11 Washdown Bay
Figure 9:	AEC12 Pot Lines and PAEC 25 Dry Scrubbers
Figure 10:	PAEC 26 Bake Furnace Scrubber
Figure 11:	PAEC 28 Playing Fields
Figure 12:	PAEC 29 Area east of Playing Fields
Figure 13:	PAEC 31 Storage Area west of Pot Line 3

List of Tables

Table 5.1: Table 6.1:	Subsurface Conditions beneath the Carbon Plant Sampling Program for PAECs
Table 6.2:	Laboratory Analysis for Groundwater Samples
Table 8.1:	Soil Assessment Criteria (mg/kg) – Health and Ecological Investigation Levels
Table 8.2:	Soil Assessment Criteria for Vapour Intrusion – HSL D (mg/kg) - Sand
Table 8.3:	ESLs and Management Limits for Petroleum Hydrocarbons in Soil
Table 8.4:	Site Specific Soil Assessment Guidelines for Fluoride (mg/kg)
Table 8.5:	Groundwater Assessment Criteria (μg/L)
Table 10.1	Summary of Site Soil Contamination
Table 10.2	Exposure Pathways Assessment
Table 10.3:	Recommended Remediation
Table LR1:	Soil Analytical Results for AEC2 Anode Waste Pile

Table LR1:	Soil Analytical Results for AEC2 Anode Waste Pile
Table LR2:	Soil Analytical Results for AEC4 Diesel Spray Area
Table LR3:	Soil Analytical Results for AEC8 Carbon Plant
Table LR4:	Soil Analytical Results for AEC11 Washdown Bay
Table LR5:	Soil Analytical Results for AEC12 and AEC25 Pot Lines and Dry Scrubbers
Table LR6:	Soil Analytical Results for AEC26 Bake Furnace Scrubber
Table LR7:	Soil Analytical Results for AEC28 Playing Fields
Table LR8:	Soil Analytical Results for AEC29 Area east of Playing Fields

54

Table LR9: Soil Analytical Results for AEC31 Storage Area west of Pot Line 3

Table LR10: Groundwater Analytical Results for all AECs
Table LR11: Groundwater Results for VOCs and SVOCs

Table LR12: Soil QA/QC Results

Table LR13: Groundwater QA/QC Results

List of Appendices

Appendix A: 2012 Soil Results

Appendix B: Soil Analysis and Quality Plan (SAQP)
Appendix C: NEPM (2013) EIL Calculation Spreadsheets

Appendix D: Field Methodologies
Appendix E: QA/QC Assessment

Appendix F: Borehole, Test Pit and Hand Auger Logs

Appendix G: Laboratory Results for Soil

Appendix H: Laboratory Results for Groundwater

Appendix I: Groundwater Field Sheets

Acronyms and Abbreviations

ACM Asbestos Containing Materials
AEC Area of Environmental Concern
AHD Australian Height Datum
ALS Australian Laboratory Services

ASET Australian Safer Environment and Technology Pty Ltd. (Laboratory)

ANZECC Australian and New Zealand Environment and Conservation Council

B(a)P Benzo(a)pyrene BGS Below Ground Surface

BTEX Benzene, Toluene, Ethylbenzene & Xylenes (Monocyclic aromatic Hydrocarbons)

CN Cyanide (total or free)
CT Certificate of Title
DP Deposited Plan
DQO Data Quality Objective
EIL Ecological Investigation Level

EPA Environment Protection Authority
ESA Environmental Site Assessment

Ha Hectare km Kilometres LOR Limit of Reporting

m Metres

MAH Monocyclic Aromatic Hydrocarbons
Mercury Inorganic mercury unless noted otherwise

Metals As: Arsenic, Cd: Cadmium, Cr: Chromium, Cu: Copper, Fe: Iron, Ni: Nickel, Pb: Lead, Zn:

Zinc, Hg: Mercury, Se: Selenium

mg/kg Milligrams per Kilogram
mg/L Milligrams per Litre
m BGL Metres below ground level
mg/L Micrograms per Litre
MW Monitoring well

NATA National Association of Testing Authorities

NC Not Calculated ND Not Detected

NEHF National Environmental Health Forum
NEPM National Environment Protection Measure
NHMRC National Health and Medical Research Council

n Number of Samples
OCPs Organochlorine Pesticides
OH&S Occupational Health & Safety
OPPs Organophosphorus Pesticides

PAEC Potential Area of Environmental Concern PAHs Polycyclic Aromatic Hydrocarbons

PCBs Polychlorinated Biphenyls
PID Photoionisation Detector
PQL Practical Quantitation Limit

pH a measure of acidity, hydrogen ion activity

QA/QC Quality Assurance/Quality Control RPD Relative Percent Difference SILs Soil Investigation Levels SMF Synthetic Mineral Fibre

SVOCs Semi Volatile Organic Compounds TPHs Total Petroleum Hydrocarbons

UCL Upper Confidence Limit

VENM Virgin Excavated Natural Material VOCs Volatile Organic Compounds

μg/L Micrograms per Litre

On tables is "not calculated", "no criteria" or "not applicable"

Executive Summary

ENVIRON Australia Pty Limited (ENVIRON) was commissioned by Hydro Aluminium Kurri Kurri Pty Limited (Hydro) to complete Stage 2 of a Phase 2 Environmental Site Assessment (ESA) at the Hydro Kurri Kurri Aluminium Smelter located of Hart Road, Loxford, New South Wales. The site incorporates 60ha of Smelter Site and approximately 2,000ha of surrounding buffer land and is hereinafter referred to as 'the site'. The initial Stage 1 phase of work was completed in November 2012. The objective of the Stage 2 investigations was to build upon the results of the Stage 1 in assessing the presence of contamination at the Smelter site and to assess the suitability of the site for the purposes of General Industrial (IN1), Heavy Industrial (IN3) and Environmental Conservation (E2) landuse.

The scope of work for the Stage 2 investigations includes the following:

- Review of previous investigations and identification of data gaps;
- Development of a Sampling, Analysis and Quality plan (SAQP):
- Soil sampling at five areas of environmental concern (AECs) identified from the Stage 1 investigations and five new potential areas of environmental concern (PAECs):
- The installation of seven new groundwater wells at three of the AECs;
- Groundwater sampling of the seven new and 17 existing wells;
- Laboratory analysis for soil and groundwater samples;
- · Assessment of laboratory results against site criteria;
- Refinement of the conceptual site model (CSM);
- Identification of additional site investigation works to refine the CSM; and
- Assessment of areas requiring remediation.

The CSM assumed a future commercial/industrial site landuse, and considered off-site receptors in the down-hydraulic gradient area. The following complete source-pathway-receptor linkages were identified in the CSM:

- Inhalation of dust generated from surface soil impacts by current and future on-site commercial/industrial adult employees;
- Direct contact with impacted soil and groundwater by current and future on-site intrusive maintenance workers;
- Direct contact with impacted sediment by current and future on-site commercial/industrial employees.

In order to further refine the CSM, a number of targeted investigations are required to be performed at the West Surge Pond, the Sub-Stations and the Area East of the Clay Borrow Pit.

Based upon the source-pathway-receptor linkages identified in the refined CSM, surface soil and sediment remediation at the following AECs is required:

- Capped Waste Stockpile: This AEC has been assessed separately to this investigation;
- Anode Waste Pile: PAH contamination in surface soils to 0.2m bgs. Delineation and remediation of PAH hot spot at MW103;
- Diesel Spray Area: PAH contamination of fill material at 0.4m to 0.6m bgs.
 Delineation and remediation required;
- Drainage Lines: PAH contamination of sediments in drainage lines around the Capped Waste Stockpile and the Anode Waste Pile;
- East Surge Pond: PAH contamination of sediments;
- Carbon Plant: PAH contamination of shallow soils to 0.4m bgs in grassed areas and gardens beds at the western end of the Carbon Plant;
- Bake Furnace Scrubber: PAH contamination in shallow soils to 0.3m bgs in grassed areas below the scrubber duct work. Delineation of remediation of PAH hot spot at HA115; and
- Area east of the Playing Fields: Buried wastes to be remediated for aesthetic reasons. Delineation and remediation of PAH hot spot identified in south east corner at TP117.

Vertical delineation of the soil contamination at each AEC was completed as part of the Stage 2 investigations. The soil contamination identified is PAH (primarily benzo(a)pyrene) contamination in fill, which has not extended into the underlying alluvial sands and has not impacted groundwater. Lateral delineation of soil contamination has been completed to the extent practicable at this time given buildings, stockpiles, roads and services limit potential sampling locations. Lateral delineation of soil contamination and hot spots will be required at some AECs (e.g. Anode Waste Pile, Diesel Spray Area) prior to remediation.

ENVIRON recommends the preparation of a Remedial Action Plan (RAP) for the Smelter Site to develop remediation and validation plans for each of the seven AECs identified above. The Remediation Action Plan should be prepared in accordance with NSW EPA (2011) Guidelines for Consultants Reporting on Contaminated Sites. As remediation is likely to occur following or during the demolition of the buildings on the Smelter Site, the RAP should consider impacts to surface soils that may occur during demolition. Validation sampling programs for each area should consider contamination identified in this Phase 2 ESA, as well as additional contamination impacts to surface soils that may occur through demolition.

ENVIRON recommends a health risk assessment be completed to derive site-specific criterion for fluoride for maintenance and construction employees and assess the requirement for remediation of fluoride in groundwater beneath the Smelter Site.

Hydro has separately engaged an EPA-accredited Site Auditor to assess the appropriateness of the Remedial Action Plan and to assess if the site can be made suitable for the proposed landuse by implementation of the Remedial Action Plan. Following the completion of the remediation, the Site Auditor will provide a Site Audit Statement certifying that the site is suitable for the proposed use.

Phase 2 Environmental Site Assessment, Smelter Site, Additional Investigations Hydro Kurri Kurri Aluminium Smelter Page 4

Hydro Aluminium May 2015

1 Introduction

1.1 Background

This report presents the findings of Stage 2 of a Phase 2 Environmental Site Assessment (ESA) which was performed at the former Hydro Kurri Kurri Aluminium Smelter located off Hart Road, Loxford, New South Wales (NSW). The site incorporates 60ha of Smelter Site and 2,000ha of surrounding buffer land and is hereinafter referred to as 'the site'. This report relates to the part of the site used for Smelter operations and ancillary land use in the immediate vicinity of the operations, herein referred to as 'the Smelter site' and defined as shown on Figure 2. Hydro owned land outside of the Smelter Site has been investigated under separate cover.

The work has been performed at the request of Mr Richard Brown, Hydro Aluminium Kurri Kurri Pty Limited (the 'Client') (Hydro).

1.2 Objectives and Scope of Work

The objective of Stage 2 of the Phase 2 ESA investigations is to build upon the results of Stage 1 completed in 2012, in assessing the presence of contamination at the Smelter site and to assess the suitability of the site for the purposes of General Industrial (IN1), Heavy Industrial (IN3) and Environmental Conservation (E2) landuse.

The scope of work for Stage 2 investigations includes the following:

- Review of the Stage 1 works, any subsequent information and identification of remaining data gaps;
- Development of a Sampling, Analysis and Quality plan (SAQP);
- Soil sampling and the installation of new groundwater wells;
- Groundwater sampling of new and existing wells:
- Laboratory analysis for soil and groundwater samples;
- Assessment of laboratory results against site criteria;
- Assessment of data quality and reliability;
- · Refinement of the conceptual site model; and
- · Assessment of areas requiring remediation.

1.3 Project Background

Hydro suspended operations at the Kurri Kurri Smelter in 2012 and following a two year period of care and maintenance, closure was announced in May 2014. Environmental investigations are being undertaken to understand remediation requirements at the site and the potential for land divestment.

The Kurri Kurri Smelter produced 180,000 tonnes of aluminium metal per annum. The smelter commenced production in 1969 with a single pot line. A second pot line was commissioned in 1979, and a third added in 1985. In 2002, Hydro undertook an upgrade program, which increased production capacity to 180,000 tonnes. The smelter is surrounded by a 2,000ha buffer zone, part of which is used for agricultural purposes.

1.4 Limitations

The scope of the Environmental Site Assessment was based on ENVIRON's proposal dated 2 June 2014.

Specific assumptions and limitations identified by ENVIRON as being relevant are set out in the report. The methodology and sources of information used by ENVIRON are outlined in our scope of work. ENVIRON has made no independent verification of this information beyond the agreed scope of works and assumes no responsibility for any inaccuracies or omissions made by others.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose.

2 Site Identification

2.1 Site Location

The site is located approximately 30km west of the town of Newcastle and 150km north of Sydney in New South Wales, Australia.

The site address is:

Hart Road Loxford New South Wales 2327 AUSTRALIA

The site includes a 60ha plant area ('the Smelter Site'), which is described by 10 different allotments, Lots 318, 319, 411, 412, 413, 414, 415, 769, 776 in DP 755231, and Lot 3 in DP 456769; and a 2,000ha land parcel, which includes a Buffer Zone around the Smelter Site and land owned by Hydro that is outside the Buffer Zone. The 2,000ha land parcel is described by approximately 75 different allotments.

This Phase 2 ESA is focused on the smelter site only. A location plan of the smelter site is provided in **Figure 1**. The boundary of the smelter site is shown in **Figure 2**. The layout of the smelter is shown in **Figure 3**.

3 Site History

3.1 General

The Smelter was built on previously undeveloped agricultural land. A Buffer Zone of land was purchased around the planned facility as required in the planning approval for the smelter.

The site was developed in 1969 by Alcan Australia Ltd., later Capral Aluminium, with potlines commissioned in 1969 (Line 1-120 cells; expanded in 1973 to 50,000 tonnes per annum), in 1979 (Line 2-120 cells), and in 1985 (Line 3-120 cells) for a final capacity of 170,000 tonnes per annum.

The site was purchased by VAW Aluminium in 2000, and became part of Hydro with the purchase of VAW Aluminium in 2001.

3.2 Zoning

3.2.1 Current

The site is currently zoned 'RU2 Rural Landscape' under the Cessnock Local Environmental Plan (LEP) 2011. The objectives of the RU2 Rural Landscape zoning are:

- To encourage sustainable primary industry production by maintaining and enhancing the natural resource base;
- To maintain the rural landscape character of the land;
- To provide for a range of compatible land uses, including extensive agriculture;
- To enable other forms of development that are associated with rural activity and require an isolated location or support tourism and recreation; and
- To ensure that the type and intensity of development is appropriate in relation to the rural capability and suitability of the land, the preservation of the agricultural, mineral and extractive production potential of the land, the rural environment (including scenic resources) and the costs of providing services and amenities.

It is noted the current site use is permissible under existing use rights as established within the NSW *Environmental Planning and Assessment Act 1979.*

3.2.2 Proposed Future Land Use

A Rezoning Masterplan (dwp Suters, December 2013) was developed in late 2013 which identifies potential future land uses at the smelter site and buffer zone. The potential future land use at the Smelter site is for the majority of the site to be rezoned General Industrial (IN1), a portion in the north-western corner to the rezoned Heavy Industrial (IN3) and for the remainder to be rezoned Environmental Conservation (E2).

The area to be rezoned General Industrial includes the footprint of the area that has been developed for the Smelter. The area to be rezoned Heavy Industrial includes the Clay Borrow Pit and access road to the west of the Smelter. The area to be rezoned

Environmental Conservation includes bushland immediately surrounding the Smelter footprint that has remained undeveloped aside from access tracks.

An application for rezoning of the land consistent with these uses is being prepared by others.

3.3 Landuse

The smelter site includes a plant area for the aluminium smelter, as shown in **Figure 3**. The majority of the smelter site is developed with buildings and associated hardstand areas. Areas adjacent to the buildings are predominately sealed with concrete or bitumen (car parks, roadways and turning areas). Established garden beds and grassed areas surround some buildings on the eastern portion of the Smelter Site.

The smelter site is accessed through one main entrance located on the southern boundary of the plant off Hart Road. The Smelter Site is currently maintained by a small team of Hydro employees.

The Smelter Site was originally developed in 1969 with the construction of one pot line and associated infrastructure. The plant was expanded in 1973 and again in 1985 with the addition of two pot lines and the expansion of other infrastructure. The Smelter Site layout, as shown in **Figure 3**, is described as follows:

- Pot Lines 1, 2 and 3 are located on the western portion of the smelter. Alumina and cryolite were placed within pots and an electrical current applied. Molten aluminium was siphoned from each pot and taken to the Cast House;
- The Cast House is located immediately east of Pot Line 1 near the main entrance. The Cast House produced cast aluminium products to product specifications often including the addition of alloys. The Cast Houses utilised chlorine gas to avoid oxidation during the casting process. The gas was captured when the casting chamber is filled. Wastes from the Cast House included dross and swarf, which have a high aluminium content and were sent for recycling off-site;
- The Carbon Plant is located near the northern plant boundary to the east of the potlines. The Carbon Plant produced anodes from a mixture of coke, pitch and recycled anode butts to produce a green anode. This green anode was then baked within a bake furnace prior to the addition of a cast iron rod, and dispatched to the Pot Rooms. The bake furnace was gas fired however it was previously oil heated. Ancillary operations associated with the Carbon Plant include a liquid pitch tank, petroleum coke storage, the bake furnace scrubber, the rodding building, rodding mix storage building, baked anode storage; and
- A pot reconditioning area was located to the south of Pot Line 1. The pot reconditioning area contains one large building where pots were reconditioned for reuse.

Infrastructure and ancillary structures located within the Smelter Site include:

- A transformer yard and substation are located in the north western corner of the Smelter Site;
- Stormwater on the plant's paved areas is directed via conduits to either the West Surge Pond, which is located on the western boundary of the smelter or the East Surge Pond, which is located on the eastern boundary of the smelter. Surface water runoff from the carpark and administration areas is directed to the South Surge Pond. All ponds overflow to the North Dam, located to the north of the Carbon Plant;
- Smelter wastes including Spent Potlining was stockpiled on a low lying area of the smelter near the eastern plant boundary between 1969 and the early 1990s. The smelter waste mound (known as the Capped Waste Stockpile) was capped with clay in 1995. Since this time smelter wastes have been stockpiled separately or recycled. Spent potlinings are now stored in purpose-built sheds, of which there are ten located to the south of the Capped Waste Stockpile;
- A maintenance compound is located in the centre of the smelter, south of the Carbon Plant. The compound is used for maintenance activities as well as storage of equipment and spare parts;
- A diesel refuelling area is located in the centre of the smelter. The diesel refuelling area contains one above ground storage tank (AST) and a wash bay;
- A diesel spray area is located at the rear of the Carbon Plant on the northern smelter boundary, which was used to treat rust coatings from cathode rods prior to reuse;
 and
- Offices, a security gate house, canteen, two playing fields and a gym are located within the smelter site.
- Storage area west of Pot Lines
- The Clay Borrow Pit
- And vegetated area forming part of the buffer zone for the site

The infrastructure and ancillary structures described above are included on **Figure 3**. It is noted that the Smelter Site is currently in care and maintenance following closure of the site operations in May 2014.

3.4 Licences, Permits and Approvals

3.4.1 Planning Approvals

Three planning approvals have been granted at the site throughout the period of operations as follows:

 5th November 1980: The Minister for Environment and Planning granted development approval for the proposed expansion of the Kurri Kurri Smelter by construction of a third pot line and associated production and support facilities. The approval includes 51 consent conditions relating to the upgrade and the operations at the site, including assessment of smelter emissions, monitoring of air, vegetation, native vegetation, vineyards, other cultivated vegetation, forage, rainwater, surface water, groundwater, water at Wentworth Swamp, native and feral animals, farm animals, bees and ecosystem monitoring.

- 11th January 1993: The Council of the City of Cessnock granted approval for the
 upgrade of waste storage facilities including capping of the Alcan Mound (Capped
 Waste Stockpile) and construction of above ground sheds for future storage of SPL.
 There are 37 consent conditions relating to the capping of the Alcan Mound (Capped
 Waste Stockpile) and construction of the storage sheds.
- 21st August 2002: The Minister for Planning granted approval for the installation of a Greenmix Plant scrubber, upgrade of the Anode Plant and upgrades to Pot Line 1. A series of consent conditions were included on this approval, including environmental performance requirements for air quality, dust emissions, discharge limits and water quality impacts.

3.4.2 Environmental Protection Licence

The Smelter Site operates under Licence EPL 1548 which licenced the carrying out of aluminium production >10,000 T and metal waste generation of >100 T generated or stored during the operation of the smelter. In August 2014, a variation was made to the licence and the scheduled activity under the licence is currently for waste storage.

A licence transfer was approved on 25 August 2000. Licence variations have been issued on 1 February 2002, 27 October 2004, 16 June 2011, 30 March 2012 and 18 August 2014. A search of the EPL on the Office of Environment and Heritage website indicates that non-compliance load based licencing data was received in annual returns from 2004 (total solid particles), 2008 (nitrogen oxides) and 2013 (clerical error).

3.5 Previous ENVIRON Investigations

ENVIRON has completed a number of investigations at the Kurri Kurri Aluminium Smelter since operations were suspended in 2012. These investigations included a historical review of the Smelter Site. Investigations completed by ENVIRON that are relevant to this investigation are outlined below.

3.5.1 Stage 1 of the Phase 2 ESA

ENVIRON completed Stage 1 of the staged Phase 2 ESA in 2012. Stage 1 included the following documents:

- ENVIRON (March 2012) 'Sampling, Analysis and Quality Plan, Kurri Kurri Aluminium Smelter'
- ENVIRON (1 November 2012) 'Phase 2 Environmental Site Assessment, Kurri Kurri Aluminium Smelter'

Stage 1 involved the following tasks:

 A desktop study, including a review of historical information and background data and a site walkover;

- The identification of 20 potential areas of concern and five potential contaminants of concern relating to the production of aluminium and the ancillary operations;
- The development of a SAQP to assess the potential areas and chemicals of concern;
- Field investigations, including the drilling of 31 boreholes, installation of 21 groundwater monitoring wells, collection of 45 surface soil samples, 14 sediment samples and 28 groundwater samples;
- Analysis of soil, groundwater and sediment samples for a range of potential contaminants of concern;
- The development of a conceptual site model including sources of contamination, receptors and pathways between the sources and receptors; and
- Recommendations for further investigations.

Note that these results are compared against the most relevant guidelines available in 2012, as follows:

- NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (Second Edition);
- NSW EPA (1994) Guidelines for Assessing Service Station Sites
- NEPC (1999) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM).

As the NEPM (1999) guidelines were updated in 2013, the 2012 soil results were reassessed using the NEPM (2013) guidelines as part of this current investigation. Soil results from the 2012 investigation for all AECs compared against NEPM (2013) are included in **Appendix A**.

The Phase 2 ESA identified ten areas of concern that require further evaluation, as follows:

- AEC 1: Capped Waste Stockpile soil and groundwater
- AEC 2: Anode Waste Pile soil
- AEC 3: Refuelling Area groundwater
- AEC 4: Diesel Spray Area soil
- AEC 6: East Surge Pond sediments
- AEC 8 Carbon Plant (western end only) soil
- AEC 11: Washdown Bay soil
- AEC12: Pot Lines soil
- AEC15: West Surge Pond sediments

Groundwater beneath the Smelter Site.

3.5.2 Capped Waste Stockpile

Following the Phase 2 ESA, the Capped Waste Stockpile was notified as potentially contaminated land to the New South Wales Environment Protection Authority (EPA) under Section 60 of the Contaminated Land Management Act 1997. In response, the EPA requested further information regarding the contamination status of the notified area. ENVIRON completed an Environmental Site Assessment on the notified area in 2013, which included the following tasks:

- Review and collation of relevant historical information pertaining to the Capped Waste Stockpile and the surrounding leachate impact area;
- Field sampling of 14 groundwater monitoring wells;
- Completion of a pumping test to assess aguifer behaviour;
- Water quality sampling of 14 wells following pumping to assess variations in response to changes in the aquifer; and
- Completion of a report identifying known information, data gaps and recommendations for further investigations to address the data gaps.

The recommended further investigations were undertaken, including a Preliminary Screening Level human health risk assessment to identify guidelines for fluoride in soil and water at the site for human health; a Tier 2 ecological risk assessment to assess impacted from leachate migration on the local ecology; delineation of the plume using a combination of existing data and further field investigations and commencement of a quarterly monitoring regime to monitor the leachate plume.

The following documents were prepared for the Capped Waste Stockpile, noting the groundwater monitoring is currently on-going:

- ENVIRON (12 August 2012) 'Section 60 Notification Supporting Information'
- ENVIRON (13 December 2012) 'Environmental Site Assessment, Alcan Mound, Kurri Kurri Aluminium Smelter'
- ENVIRON (March 2013) 'Tier 2 Ecological Risk Assessment, Kurri Kurri Aluminium Smelter'
- ENVIRON (2 April 2013) Preliminary Screening Level, Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford'
- ENVIRON (11 October 2013) 'Plume Delineation Report, Alcan Mound'

As the Capped Waste Stockpile is being assessed separately, it will not be included in this report.

3.5.3 Clay Borrow Pit

The Clay Borrow Pit was assessed as an AEC in the 2012 Phase 2 ESA. Historical records indicate the Clay Borrow Pit was the source of clay materials for capping of the Capped Waste Stockpile located on the eastern side of the Smelter Site and undertaken in the 1990's. The resultant void was later filled with inert materials from the Smelter Site primarily comprising bake furnace refractory, concrete and asphalt. Filling has reinstated the excavation to ground level. Subsequent filling has resulted in above ground stockpiling of these smelter materials in this area.

Soil samples were analysed for hydrocarbons, heavy metals, fluoride, and a range of semi-volatile hydrocarbon including PAHs, pesticide, and chlorinated hydrocarbons. Groundwater samples were also analysed for hydrocarbons, heavy metals, fluoride, cyanide, and a range of semi-volatile hydrocarbon including PAHs, pesticide, and chlorinated hydrocarbons.

Sampling of the soil matrix identified slightly elevated fluoride concentrations but other potential contaminants were either below detectable limits or below guideline concentrations. However, the presence of fill represents an impact on visual amenity and safety risk to the proposed future industrial use of the property.

Evaluation of groundwater quality from within the in-filled borrow pit (MW05) found elevated concentrations of fluoride (15,000µg/L). The fluoride concentration, compared to a background concentration of 1000µg/L in MW06, is considered to be elevated.

Remediation of the Clay Borrow Pit is required to remove the aesthetic impact from the presence of these materials and to mitigate possible impacts to groundwater. ENVIRON completed a Remedial Action Work Plan (July 2014) for this Clay Borrow Pit Area.

3.5.4 Ecological Risk Assessment

A Tier 2 Ecological Risk Assessment was completed in March 2013 (2013a) as there are no ecological assessment guidelines in Australia for fluoride and aluminium. The ecological risk assessment included an assessment of surface water quality at sites upstream and downstream of the Smelter Site in relation to fluoride and aluminium. The ecological risk assessment identified that the fluoride and aluminium concentrations present at the Capped Waste Stockpile have not impacted on the aquatic species at the receptor point at Swamp Creek.

3.5.5 Health Risk Assessment

A Health Risk Assessment was completed in April 2013 (2013b) as there are no human health assessment guidelines in Australia for fluoride and aluminium. The human health risk assessment allowed for the development of site-specific preliminary guidelines for fluoride and aluminium concentrations in soils, groundwater and surface water at the Smelter Site. The site-specific preliminary guidelines have been used as part of this investigation and are outlined in **Sections 8.1** and **8.2**.

3.5.6 Phase 1 ESA

A Phase 1 ESA was completed in October 2013 (2013c) to identify any potential areas of concern that were not identified in the high level review completed as part of the 2012 Phase 2 ESA. The Phase 1 ESA included the following tasks:

- A review of historical reports relating to land use and operations at the Smelter Site and Buffer Zone to assess the potential for soil and groundwater or surface water contamination arising from historical and current uses;
- A review of published geological, hydrogeological and hydrological data associated with the Smelter Site and Buffer Zone to establish the environmental setting and sensitivity;
- Detailed review of historical aerial photographs from 1951 (earliest available aerial photo), 1957, 1961, 1966, 1975, 1978, 1987, 1994, 2001, 2006 and 2013;
- Detailed site walkover;
- Interview with Hydro Environmental Manager Mr Kerry McNaughton; and
- Review of previous investigations undertaken by ENVIRON and others.

An Environmental Issues Register was developed for both the Smelter Site and the Buffer Zone, detailing the development on each deposited plan and potential environmental issues relating to the development. The Phase 1 ESA did not identify additional issues as the Smelter Site and therefore the AECs listed in **Section 3.4.1** were recorded on the Environmental Issues Register.

4 Site Condition and Surrounding Environment

4.1 Topography

The Smelter Site is located between low residual hills to the west and low lying swampy land to the north and east. Low lying areas were filled to create a flat, elevated platform at approximately 14m AHD for construction. The Smelter Site is relatively flat with a gentle slope from west to east, from the plant area towards the surrounding water courses.

Surrounding the Smelter Site the landforms in the north and east comprises low-lying swamps, with many surface water drainage ponds and creeks, interspersed with topographical rises comprising residual soils. In the south and west, the landform is predominantly residual hills with gully formations draining to the north and east.

4.2 Boundary Conditions

The boundary of the Smelter Site is shown in **Figure 2**. The western, northern and southern boundaries are identifiable by roads or tracks, including the recently completed Hunter Expressway on the southern boundary of the Smelter Site. The majority of the eastern boundary is within bushland and is not easily identifiable on the ground.

The smelter plant within the Smelter Site is fully fenced. It is evident along the northern and eastern fenceline that the smelter is on higher ground than the surrounding Buffer Zone, indicating this area has been filled to create a level platform for the Smelter plant.

4.3 Visible Signs of Contamination

During site visits conducted by ENVIRON on 6 and 15 May 2014, visible signs of contamination were noted at the following areas:

- In the garden bed adjacent to the Butt Tunnel Sump in the south west corner of the Carbon Plant. Surface soils in the garden bed are discoloured black (see **Figure 7**);
- As staining on the external concrete surrounding two hydraulic rooms in the Carbon Plant (see Figure 7);
- As staining on the external concrete surrounding the Heating Transfer Medium (HTM) electric heater room and gas heater room in the Carbon Plant (see Figure 7);
- As staining on the external concrete surrounding hydraulic rooms in the Casting Plant; and
- Hydraulic oil on the floor of the Butt Crushing Plant (see **Figure 7**).

ENVIRON notes that the concrete floors of the hydraulic rooms are elevated compared to the surrounding ground level, and reportedly the concrete floors beneath the hydraulic rooms are thicker compared to other building structures.

4.4 Visible Signs of Plant Stress

During site visits conducted by ENVIRON throughout 2012, 2013 and 2014, visible signs of plant stress were observed down gradient of the Capped Waste Stockpile near the eastern site boundary, as shown in **Figure 2**. The plant stress is likely due to a perched fluoride and cyanide groundwater plume originating from the Capped Waste Stockpile which is being assessed separately to this investigation. Consequently, environmental issues associated with the Capped Waste Stockpile are not discussed further in this report.

4.5 Presence of Drums, Wastes and Fill Material

Drums were observed by ENVIRON at the drum store in the eastern portion of the Smelter Site on 15 May 2014. The drum store comprised empty 44 gallon drums of Castrol oil.

During the site visit, smelter wastes were observed at the Anode Waste Pile, where ahead of schedule anodes are stockpiled prior to disposal or reuse and at the Clay Borrow Pit, where refractory bricks and concrete are stockpiled. A second anode waste pile was also observed immediately east of Pot Line 1, where excess anodes have been stockpiled prior to disposal off-site since the closure of the smelter.

Stockpiles of various waste streams were observed on the storage area west of Pot Line 3 during the 2012 site walkover. It is noted that these stockpiles have since been recycled or disposed of and were not present during the recent investigations.

Fill material was observed to have been used to cap the Capped Waste Stockpile. Assessment of the Capped Waste Stockpile is being completed separately to this investigation and the Capped Waste Stockpile is not discussed further in this report.

4.6 Odours

No odours were noted at the Smelter Site during the investigations conducted between 23 June and 2 July 2014. It is noted that the smelter is no longer operational.

4.7 Conditions of Buildings and Roads

Roads at the Smelter Site were noted to be in good condition during the investigations undertaken between 23 June and 2 July 2014. The condition of buildings at the Smelter Site is gradually deteriorating due to a lack of use. Since operations ceased in 2012 and the smelter was put on a care and maintenance mode, rust has developed on the surface of scrubbers and other plant associated with the pot lines. Office buildings remain in good condition.

The care and maintenance team maintain the condition of the buildings at the Smelter Site.

4.8 Quality of Surface Water

There are five storage ponds located at the smelter as shown on **Figure 3**. Surface water from the smelter is directed to these storage ponds via open channels and some concrete subsurface drainage lines. Surface water ponds known as 'East', 'West' and 'South' are pumped to the North dams where excess surface water is discharged to an irrigation area under license from NSW Office of Environment and Heritage (EPL 1548). Surface water dams were constructed by excavation into the residual underlying extremely weathered bedrock.

Currently, an active leachate interception trench placed at the toe of the Capped Waste Stockpile is intercepting leachate from below the Capped Waste Stockpile and diverting it to the East Surge Pond. Further downgradient, a passive leachate interception trench intercepts groundwater following rain events and diverts this groundwater to the East Surge Pond. Surface water quality data from the East Surge Pond and North Dams are monitored for pH, fluoride and cyanide. Data from 2014 monitoring indicates that pH is neutral at 6.5 to 7 in both dams, fluoride concentrations have varied between 5.6mg/L and 20mg/L in the East Surge Pond and 14.8mg/L to 18mg/L in North Dam No. outlet to irrigation and free cyanide concentrations are generally less than the laboratory detection limit. These fluoride concentrations are elevated compared to background levels, which is likely due to the flow of stormwater past the Anode Waste Pile prior to pumping to the North Dam.

4.9 Flood Potential

The majority of the Smelter Site is located on low lying swampy ground that has been filled. Low lying areas of the site remain susceptible to flooding. The western portion of the Smelter Site is located on ground at a higher elevation and is less likely to flood.

The west, south and east surge ponds collect storm water runoff during rainfall events, which is then pumped to the two North Dams. The East Surge Pond has overflowed during periods of heavy rainfall, with storm water flowing east through the Buffer Zone.

4.10 Local Sensitive Environment

Sensitive environments including a creek and a wetland swamp are located in the vicinity of the Smelter Site.

Swamp Creek is located approximately 400m to the south and east of the Smelter Site, flowing in a northerly direction. Swamp Creek flows north into Wentworth Swamp, a large wetland located approximately 1.6km north of the Smelter Site. Swamp Creek is the receptor for groundwater from the eastern portion of the Smelter Site.

Black Waterholes Creek is located approximately 700m to the north of the Smelter Site, flowing in a northerly direction. Black Waterholes Creek flows north into the western portion of Wentworth Swamp. Black Waterholes Creek is the receptor for groundwater from the western portion of the Smelter Site.

Parts of the surrounding land comprising the Buffer Zone are also considered to contain sensitive environments such as the Kurri Kurri Sand Swamp Woodland and Lower Hunter Spotted Gum – Ironbark Forest endangered ecological communities, as well as Freshwater Wetlands on Coastal Floodplains, River-flat Eucalypt Forest on Coastal Floodplains and Central Hunter Ironbark-Spotted Gum-Grey Box Forest endangered ecological communities.

5 Geology and Hydrogeology

5.1 Geology

According to the review of the regional geology described on the Sydney Basin Geological Sheet, the Smelter Site and Buffer Zone are underlain by siltstone, marl and minor sandstone from the Permian aged Rutherford Formation (Dalwood Group) in the Sydney Basin.

The Sydney Basin is a sedimentary basin consisting of Permian and Triassic sedimentary rocks, which extends from Newcastle in the north to Batemans Bay in the south and to Lithgow, just west of the Blue Mountains. The basin overlies older basement rocks of the Lachlan Fold Belt. The sedimentary rocks of the basin generally consist of near horizontal sandstones and shales, with some recent igneous dykes. Only minor folding and faulting has occurred since these sedimentary rock sequences first formed. The Dalwood Group is stratigraphically located near the base of the Sydney Basin below both the Greta Coal Measures and Newcastle Coal Measures and was deposited in a marine environment.

Undifferentiated Quaternary alluvium occurs in the east and northeast in the Buffer Zone associated with surface water bodies. Quaternary sediments which are associated with Swamp Creek (located to the east of the site), Wentworth Swamps and the Hunter River consist of complex interbedded fluvial and marine sands and estuarine muds deposited within an estuarine environment during periods of sea level rise and fall.

5.2 Location and Extent of Fill

The smelter is located in low lying land that was filled to create a level area for the construction of the smelter. The fill material is generally understood to comprise locally derived fill. During the 2012 Phase 2 ESA investigations, crushed refractory brick fill was observed within fill material underlying the Carbon Plant and the Pot Lines.

Clay fill material from the Clay Borrow Pit in the western portion of the Smelter Site was used to cap the Capped Waste Stockpile in the eastern portion of the Smelter Site in 1996. The excavated portion of the Clay Borrow Pit was backfilled with refractory brick and concrete fill.

A portion of the Smelter Site between the north-western fenceline and the Clay Borrow Pit was also filled with material likely to include refractory bricks and concrete waste. This area was recently filled with excess Virgin Excavated Natural Material (VENM) from the construction of the Hunter Expressway immediately south of the Smelter Site.

5.3 Borehole Logs

Borehole logs are available for the impacted area down gradient of the Capped Waste Stockpile, which has been studied extensively in the past 20 years. This information has been reviewed and assessed separately to this report.

Aside from 2012 Phase 2 ESA completed by ENVIRON, borehole logs at the Smelter Site are limited to the area around the bake furnace at the Carbon Plant. Five geotechnical reports were completed by Douglas Partners Pty Ltd in May 1993, September 2001, August 2002, December 2002 and January 2003 in relation to the bake furnace reconstructions within the Carbon Plant.

Subsurface investigations were completed in the vicinity of the Carbon Plant, with boreholes generally extended to rock to assess suitability for pile foundations. The bake furnaces are contained within pits constructed below ground level with 1.8m of granular backfill below the base of the pit to provide thermal insulation to the underlying soil.

Conditions outlined in **Table 5.1** were encountered during subsurface investigations at the Carbon Plant, located in the north-eastern corner of the Smelter.

Table 5.1: Subsurface Conditions beneath the Carbon Plant				
Depth	Lithology			
0m to 2m	Fill, gravelly sand/ sandy gravel			
2m to between 4.2m and 6.5m	Fill, gravel/ sandy gravel with a trace of some clay			
4.2m to 6.5m	Gravelly sand, loose to dense			
6.2m to 11.7m	Clay, hard to very stiff			
11.6m to 17.4m	Sand, dense to medium dense			
17.4m to >24m	Siltstone, low to very low strength at top			

During the 2012 Phase 2 ESA, ENVIRON supervised the drilling of 52 boreholes across the Smelter Site. These boreholes extended to a maximum depth of 16m bgs. The subsurface conditions varied across the Smelter Site, but generally comprised fill material overlying estuarine sediments. The fill material, where encountered, generally comprised clayey gravelly sand and included gravel brick fragments. The estuarine sediments generally comprised fine grained sand, with high plasticity clay encountered in some boreholes.

5.4 On-site Wells

During the Phase 2 ESA, ENVIRON supervised the installation of 21 monitoring wells at the Smelter Site. The wells were installed at Potential Areas of Concern, including the Carbon Plant, the Diesel Spray Area, the Refuelling Area and the Anode Waste Pile.

Prior to the Phase 2 ESA, it is understood that a pair of shallow and deep nested wells were installed at the Carbon Plant as part of the geotechnical investigations for the bake furnace reconstructions.

5.5 Depth to Groundwater Table

Groundwater at the Smelter Site was identified at shallow depths within the estuarine sands, between 1m and 5m bgs during the 2012 Phase 2 ESA.

Groundwater at the Carbon Plant was generally not encountered during geotechnical drilling but standing water levels were measured following drilling at depths ranging between 8.8m and 9.4m. Douglas Partners (2002) noted that temperatures of up to 1000°C were evident at the base of the bake furnace pits, where heat transfer was occurring through the filling and into natural ground. The 2001 Douglas Partners report indicated that soil temperatures of 100 °C to 160 °C at depths of up to 12m below slab level were encountered by Dames and Moore in 1977, with soils desiccated to depths of about 8m below slab level.

ENVIRON 2012, and previous investigations by others, identified a shallow sand aquifer extending from the surface to depths of up to 2.0m to the east of Capped Waste Stockpile. Groundwater seepage was observed down-gradient of this area towards the north east. Groundwater flows within the estuarine sands of up to 14m/year have been estimated. Groundwater with the estuarine sands is not used at the site and is not considered a suitable aquifer for use down-gradient of the Smelter Site.

5.6 Direction and Rate of Groundwater Flow

During the 2012 Phase 2 ESA, groundwater was identified flowing north to north east across the Smelter Site. Douglas Partners (2002) measured permeability within the fill of 5x10⁻⁶m/s and in the sand of 8x10⁻⁶m/s.

5.7 Direction of Surface Water Runoff

Stormwater water runoff is managed at the Smelter Site via a series of drainage channels and three surge ponds. Surge ponds discharge to the two North Dams, from which excess stormwater is spray irrigated over an adjacent paddock in accordance with EPL1548. There are no other surface water bodies located on the Smelter Site and therefore surface water at the Smelter Site has not been considered further.

Surface water receptors within the Buffer Zone are identified in **Section 4.10**. Groundwater near the eastern Smelter Site boundary exfiltrates to surface water following high rainfall events due to low lying topography in this area. This exfiltrated groundwater is observed to become overland flow discharging along a surface water flowpath to a small dam. During periods of high rain this surface water within this dam is able to flow through a culvert structure to a larger dam which discharges to Swamp Creek.

5.8 Background Water Quality

A background monitoring well was installed as part of the 2012 Phase 2 assessment. The well was installed approximately 60m west of the Smelter plant in undisturbed bushland in an upgradient location. Analysis of water from the background well in 2012 was completed and the results were below the adopted guidelines, including ANZECC (2000) 95% protection of fresh water species, irrigation and stock watering guidelines for heavy metals aside from zinc, fluoride, free cyanide, PAHs, Semi Volatile Organic Compounds (SVOCs). The zinc concentration (78µg/L) marginally exceeded the ANZECC (2000) hardness modified trigger value of 70µg/L.

5.9 Preferential Water Courses

The 1951 historical aerial photograph shows a former water course extending in a northeast/southwest direction towards Wentworth Swamp in the west of the Smelter Site. It is understood this water course was filled in and relocated to the west to provide a level platform on which to construct Pot Lines 2 and 3.

5.10 Summary of Local Meteorology

A meteorological tower was constructed at the Smelter Site in the 1990s. Data from the meteorological tower is summarised in the 2012 Annual Environmental Management Report (AECOM 2013). AECOM (2013) includes wind speed and direction, presence or absence of inversion layers, calm conditions, rainfall and temperature.

Median, daily highest and lowest hourly average temperatures have been collected over the past 20 years. AECOM (2013) indicate that the 2012 temperatures were above average for summer days and nights.

AECOM (2013) indicates annual rainfall in 2012 was 515mm, which is below the 20 year average of 619mm.

AECOM (2013) indicates quarterly wind roses show the usual pattern of strongest winds from the northwest in winter, moderate winds from the south and southwest in spring and autumn and moderate to strong southeast winds in summer.

6 Sampling, Analysis and Quality Plan

6.1 Preparation of Sampling, Analysis and Quality Plan

A Sampling, Analysis and Quality Plan (SAQP) was completed by ENVIRON in May 2014 to develop sampling requirements for the additional investigations for the Phase 2 ESA. The SAQP included the following:

- Development of Data Quality Objectives (DQOs) and Data Quality Indicators (DQIs);
- Development of the sampling plan, including:
 - Assessment of the Phase 2 ESA results against National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1);
 - A data gap analysis;
 - o Identification of potential areas of concern;
 - The sampling program;
- An outline of soil and groundwater sampling methodologies and sample handling and preservation;
- · Assessment criteria; and
- Reporting requirements.

A copy of the SAQP is included in **Appendix B**.

Following service location at the site, the sampling plan was amended to reflect the sampling locations that could be practicably completed. The amended sampling program for the identified areas of environmental concern (AECs) and potential areas of environmental concern (PAECs) is included in **Table 6.1**.

No.	AEC/PAEC	Area (m²)	Media to be Sampled	Type of Sampling	No. of Sample Locations	Targeted Depth/ Sample Depths	Laboratory Analysis
2	AEC: Anode Waste Pile	6,400	Soil	Stratified sampling around outside of stockpile for delineation of contamination	5	Surface soils to 0.5m, samples collected from 0-0.1m and 0.3-0.4m.	Fluoride, PAHs
			Groundwater	Judgemental down gradient sampling	2 existing wells 2 new wells	Groundwater between 4m and 7m.	PAHs
3	AEC: Refuelling Area	600	Groundwater	Down gradient sampling	2 existing wells 2 new wells	Groundwater between 4m and 7m.	TPH, PAHs
4	AEC: Diesel Spray Area	200	Soil	Stratified sampling to delineate contamination	4	Soils to 1m, samples collected from 0-0.1m, 0.4-0.5m, 0.8-0.9m	PAHs
6	AEC: East Surge Pond	4,400	Sediment		om the East Surge	uring the Phase 2ESA, ENVIR Pond once the sediments ha	
8	AEC: Carbon Plant (western end only)	96,000	Accessible soil	Grid-based sampling of accessible soils to delineate contamination	14	Surface soils to 0.5m, samples collected from 0- 0.1m and 0.3-0.4m	PAHs
			Groundwater	Sampling around and within former Rodding	6 existing wells	Groundwater between 4m and 7m.	PAHs

No.	AEC/PAEC	Area (m²)	Media to be Sampled	Type of Sampling	No. of Sample Locations	Targeted Depth/ Sample Depths	Laboratory Analysis
				and Greenmix buildings	3 new wells		
11	AEC: Washdown Bay	900	Soil	Grid-based sampling to assess contamination	1	Surface soils to 0.5m, samples collected from 0- 0.1m and 0.3-0.4m	Fluoride
12	AEC: Pot Lines 1, 2 and 3	180,950	Accessible soil	Stratified sampling where accessible to delineate contamination	11	Surface soils to 0.5m, samples collected from 0- 0.1m and 0.1m-0.2m	Fluoride
15	West Surge Pond	4,875	Sediment	. •	om the West Surç	uring the Phase 2ESA, ENVIF ge Pond once the sediments h	
25	PAEC: Dry Scrubbers (4 separate locations between pot lines)	3,450 per location	Soil	Judgemental sampling to assess contamination	17, at least 4 per location	Surface soils to 0.5m, samples collected from 0- 0.1m and 0.1m-0.2m	Fluoride
26	PAEC: Bake Furnace Scrubber	6,550	Soil	Grid-based sampling to assess contamination	10	Surface soils to 0.5m, samples collected from 0- 0.1m and 0.3-0.4m	Fluoride, PAHs
27	PAEC: Substations	50 per substation	Soil		•	Ibling in a live substation, ENVI ion following decommissioning	

No.	AEC/PAEC	Area (m²)	Media to be Sampled	Type of Sampling	No. of Sample Locations	Targeted Depth/ Sample Depths	Laboratory Analysis
28	PAEC: Playing Fields (two adjacent)	8,100 per oval	Soil	Grid-based sampling to assess contamination	Western field: 10 locations; Eastern field: 6 locations.	Full depth of fill, samples to be collected within fill	Heavy Metals, PTH, BTEX, PAHs, fluoride
29	PAEC: Area East of Playing Fields	9,900	Soil	Grid-based sampling to assess contamination	11	Full depth of fill, samples to be collected within fill	Heavy Metals, PTH, BTEX, PAHs, fluoride
30	PAEC: Area east of Clay Borrow Pit	28,500	Soil	_	-	the placement of Virgin Excar of the Hunter Expressway, worl	
31	PAEC: Storage Area west of Pot Lines	44,000	Soil	Grid-based sampling to assess contamination	13	Surface soils to 0.5m, samples collected from surface, 0.1m, 0.15m and 0.2m and 0.4m	Heavy Metals, PTH, BTEX, PAHs, fluoride
32	PAEC: Garden beds	NA	Soil	PAECs including Pot Lin	es, Dry Scrubbers	Lareas were assessed under se and Bake Furnace Scrubber, om these AECs/ PAECs follov	it was decided to

soil results from this investigation.

6.2 Data Quality Objectives and Data Quality Indicators

Data Quality Objectives (DQOs) and Data Quality Indicators (DQIs) were developed by ENVIRON during the development of the SAQP using the US EPA seven-step DQO process. DQOs for the Phase 2 ESA are included in **Section 4** of the SAQP (**Appendix B**) and DQIs are included in **Section 6** of the SAQP (**Appendix B**).

6.3 Project Fieldwork Phase

6.3.1 Soil Sampling

A summary of the completed fieldwork for each PAEC is outlined in **Table 6.1.** The sampling locations were selected as follows:

- For AECs assessed in the 2012 Phase 2 ESA, soil sampling locations were selected
 to delineate the vertical and lateral extent of soil contamination. As the mechanism of
 soil contamination is from either aerial fallout or placement of smelter materials on
 the surface of the site, surface and near surface soils were targeted. These AECs
 included the Anode Waste Pile, the Refuelling Area, the Diesel Spray Area, the
 Carbon Plant, the Washdown Bay and the Pot Lines.
- For PAECs identified during the data gap analysis, soil sampling locations were selected to assess the potential for soil contamination in these areas, including vertical delineation. In areas where buried fill may be located, sampling locations were grid based and the vertical extent of the buried fill (where identified) was identified. These PAECs included the playing fields and area to the east and the storage area west of the pot lines. The other PAECs identified during the data gap analysis included the dry scrubbers at the Carbon Plant and the bake furnace scrubbers at the pot lines, which have the potential for surface soil contamination from aerial fallout. Surface and near surface soils were targeted in these areas.
- For AECs and PAECs that could not be assessed at the current time due to safety considerations, such as the substations and sediments in the stormwater ponds, recommendations have been made for assessment in the future.
- One PAEC, the area to the east of the Clay Borrow Pit, was in use for relocation of VENM from the Hunter Expressway at the time of these investigations. This area will remain a data gap until such time as it can be accessed for assessment.
- It was decided that investigation of PAEC 32, the garden beds, would be completed if required following receipt of the soil results from the current investigation.
- It is noted that sampling locations at the Smelter Site were limited by the location of underground services, overhead services and other site structures.
 Recommendations have been made where sampling was restricted for these reasons.

The sampling locations at each AEC and PAEC are shown in **Figures 4** to **13**. A description of the field methodologies for soil sampling is included in **Appendix C**.

6.3.2 Groundwater Monitoring Well Installation and Sampling

A summary of the fieldwork for AECs relating to groundwater are included in **Table 6.1**. New monitoring wells were installed at the following locations:

- AEC 2 Anode Waste Pile: Two additional wells were installed down gradient of the Anode Waste Pile to delineate the extent of PAH contamination identified in wells MW12 and MW13 during the 2012 Phase 2 ESA.
- AEC 3 Refuelling Area: Two additional wells were installed at the refuelling area to delineate petroleum hydrocarbon contamination identified in well MW08 during the 2012 Phase 2 ESA. One well was installed immediately down gradient of the diesel bowser and one well was installed down gradient of both MW08 and the bowser. The location of the second well was limited by underground electricity cables.
- AEC 8 Carbon Plant: Three additional wells were installed around the western end of the Carbon Plant to assess potential groundwater contamination in this area associated with processes undertaken at the Carbon Plant. One well was located close to the liquid pitch storage area, an area where a Heat Transfer Medium (HTM) oil spill occurred. One well was located within the Rodding Building down gradient of the butt crushing plant, which crushes anode butts for reuse. The bulk of the butt crushing plant is located within a concrete-cased subsurface pit and the machinery uses hydraulic oil. The third well was located on the down gradient side of the Carbon Plant to delineate any contamination identified in this area.

The new and existing monitoring wells were sampled, with the chemicals selected for analysis specific to each area as outlined in **Table 6.2**. A description of the field methodologies is included in **Appendix C**.

Table 6.2: Laboratory Analysis for Groundwater Samples		
AEC	Monitoring Well IDs	Analysis
AEC2 Anode Waste Pile	2012 wells: MW12, MW13, New ells: MW103, MW104	PAHs, Heavy Metals, aluminium, fluoride
AEC3 Refuelling Area	2012 wells: MW07, MW08, New wells: MW101, MW102	TPH, Heavy Metals, aluminium, fluoride
AEC 4 Diesel Spray Area	2012 wells: MW19, MW20	PAHs, Heavy Metals, aluminium, fluoride
AEC 8 Carbon Plant (western end)	2012 wells: MW16, MW17, MW18, S3A, S3B New wells: MW105, MW106, MW107	PAHs, Heavy Metals, aluminium, fluoride
Remainder of site (background, Flammable Liquid Store Washbay and eastern end of Carbon Plant)	2012 wells: MW6, MW9, MW10, MW11, MW14, MW15,	Heavy Metals, aluminium, fluoride

7 Quality Assurance and Quality Control

The fieldwork program was undertaken in accordance with the DQOs and DQIs outlined in the SAQP (ENVIRON, 2014k), which is included in **Appendix B**.

A quality assurance assessment of the DQIs for this report is presented in **Appendix D**. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations, as outlined in NEPC (2013), NSW DEC (2006) and NSW EPA (2007) guidelines.

Overall it is considered that the completed investigation works and the data obtained adequately complied with the DQOs stated in the SAQP and that the data is of suitable quality to meet the project objectives.

8 Basis for Assessment Criteria

8.1 Soil

The criteria proposed for the assessment of soil contamination were sourced from the following reference:

 National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM 2013).

The variation to the National Environmental Protection (Assessment of Site Contamination) Measure (NEPM 2013) was approved on 19 June 2013 by the NSWEPA under the *Contaminated Land Management Act 1997.* NEPM (2013) provide revised health-based soil investigation levels (HILs) and ecological-based investigation levels (EILs) for various land uses. The NEPM 2013 also introduces health-based and ecological screening levels and management limits for petroleum hydrocarbons (HSLs and ESLs). The levels have been derived from recent assessments that more accurately define the exposure mechanisms and risks from sites contaminated with petroleum hydrocarbons.

The guidelines adopted for the site from the NEPM are as follows:

- HIL D Health investigation level for commercial/industrial such as shops, offices, factories and industrial sites. The HILs are applicable for assessing human health risk via all relevant pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of 3 m below the surface for industrial use.
 - The NEPM (2013) commercial/industrial values were derived assuming a typical commercial or light industrial scenario, consisting of single or multistorey buildings where work areas are on the ground floor. NEPM (2013) assumed that the commercial/industrial facility is largely covered by handstand with some limited areas of unsurfaced ground (20% of site is unsurfaced). Opportunities for direct access to soil by employees was considered minimal but there is a potential for employees to inhale, ingest or come into direct contact with dust particles derived from the soil on the site. In absence of site specific details, the generic industrial site use exposure profiles are considered applicable.
- HSLs for commercial/industrial use Health screening levels for soil vapour intrusion from petroleum hydrocarbons are guidelines that prevent accumulation of vapours at concentrations that may represent a health risk. The HSLs are derived for various depths and are for the same generic land uses as for the HILs. The guidelines are relevant were soils are beneath building or structures such as confined spaces;
- EIL for commercial/ industrial use ecological investigations levels applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physicochemical properties and generally apply to the top 2 m of soil.
- ESLs for commercial/ industrial use ecological screening levels developed for selected petroleum hydrocarbon compounds and fractions and are applicable for assessing risk to terrestrial ecosystems. These are also generally applicable to the top 2m of soil.

 Management Limits where concentrations above these limits may indicate poor aesthetics, high odour and potentially explosive vapour. Management limits are to be applied after consideration of relevant ESLs and HSLs.

The applicable assessment criteria for heavy metals and PAHs in soil are presented in **Table 8.1**.

Table 8.1: Soil Assessment Criteria (mg/kg) – Health and Ecological Investigation Levels				
	HIL D	EIL		
Aluminium	NL(site-specific)3	-		
Arsenic	3000	160		
Cadmium	900	-		
Chromium (VI)	3600	-		
Chromium (III)	-	320 (1% clay)		
Copper	240 000	210¹		
Lead	1500	1800		
Nickel	6000	140¹		
Zinc	400 000	440¹		
Mercury (inorganic)	730	-		
Fluoride	17,000 (site-specific)2	-		
Cyanide (free)	1500	-		
Carcinogenic PAHs (as BaP TEQ)	40	-		
Total PAHs	4000	-		
Naphthalene	-	370		

¹ EILs were calculated using the average CEC (7.26meq/100g), soil pH (5.5) and total organic carbon (1.3%) values from eight soil samples collected in the Buffer Zone during the March 2014 investigations (see Appendix E). The NEPM (2013) EIL calculator spreadsheet was used to generate the numbers and a site-specific ambient background concentration (ABC) was not included (rather a default ABC was used as calculated in the EIL calculator).

The applicable assessment criteria for petroleum hydrocarbons in soil are presented in **Table 8.2** and **Table 8.3**:

Table 8.2: Soil A	Assessment Criteria fo	r Vapour Intrusion	- HSL D (mg/kg) - \$	Sand	
	0 to <1m	1m to <2m	2m to <4m	4m+	
Toluene	NL	NL	NL	NL	
Ethylbenzene	NL	NL	NL	NL	
Xylenes	230	NL	NL	NL	
Naphthalene	NL	NL	NL	NL	
Benzene	3	3	3	3	
F1(4)	260	370	630	NL	

^{2.} Site-specific industrial fluoride value calculated in the *Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)*

^{3.} NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is a concentration greater than physically possible in soil, and therefore the criteria is defined as 'Non-Limiting' or NL (ENVIRON 2013).

Table 8.2: Soil Assessment Criteria for Vapour Intrusion - HSL D (mg/kg) - Sand							
	0 to <1m						
F2(5)	NL	NL	NL	NL			

- 1 The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.
- 2 (For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit>50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.
- 3 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.
- 4 To obtain F2 subtract naphthalene from the >C10-C16 fraction.

TPH fraction	Soil texture	ESLs (mg/kg dry soil)	Management Limits ¹ (mg/kg dry soil)
		Commercial and Industrial	Commercial and Industrial
F1 C6- C10	Fine	215*	800
F2 >C10-C16	Fine	170*	1000
F3 >C16-C34	Fine	2500	5000
F4 >C34-C40	Fine	6600	10 000
Benzene	Fine	95	-
Toluene	Fine	135	-
Ethylbenzene	Fine	185	-
Xylenes	Fine	95	-
Benzo(a)pyrene	Fine	72 ⁵	-

¹ Management limits are applied after consideration of relevant ESLs and HSLs.

5 Benzo(a)pyrene ESL criteria from Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects) Scientific Criteria Document (revised)

NEPM (2013) includes a low reliability ecological screening criterion for benzo(a)pyrene of 1.4mg/kg for commercial/industrial land use. This criterion has been adopted from Environment Canada (1999) benzo(a)pyrene soil quality guideline, which is based on toxicity data for a single invertebrate species (an earthworm). Environment Canada revised their benzo(a)pyrene soil quality guideline in 2010 using the Species Sensitivity Distribution method, which is the preferred method for the derivation of ecological investigation levels and can only be used where sufficient toxicity data are available that adhere to rigorous quality control requirements. ENVIRON has elected to use the revised Environment Canada

² Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

³ ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

⁴ To obtain F1, subtract the sum of BTEX from C6-C10 fraction.

soil quality guideline of 72mg/kg, for commercial/industrial land use, as the most relevant ecological investigation level for benzo(a)pyrene at the Smelter Site as this guideline has been derived from a larger and more up-to-date toxicity database than the NEPM (2013) low reliability criterion.

NEPM (2013) do not provide criteria for fluoride in soils in Australia. Therefore, ENVIRON (2013) conducted a preliminary level Human Health Risk Assessment (HRA) specific to fluoride in order to derive a specific preliminary screening level for fluoride for the Hydro Aluminium Kurri Kurri Smelter. The screening levels are protective of the range of human receptors and are provided in **Table 8.4**.

Table 8.4: Site Specific Soil Assessment Guidelines for Fluoride (mg/kg)				
Preliminary screening levels				
Land Use Preliminary screening level				
Commercial/ industrial - soil 17,000mg/kg				

Consistent with the guidance provided in the NEPM, the data was assessed against the above adopted site guidelines by:

- Comparing individual concentrations against the relevant guidelines and if discrete samples are in excess of the relevant guideline then;
- Comparing the 95% upper confidence limit of mean against the relevant guideline also ensuring that:
 - the standard deviation of the results is less than 50% of the relevant investigation or screening level, and
 - o no single value exceeds 250% of the relevant investigation or screening level.

8.2 Groundwater

The assessment criteria proposed for the assessment of groundwater contamination are sourced from the following references:

- National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM 2013).
- National Health and Medical Research Council (2008) Guidelines for Managing Risks in Recreational Water.
- NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination.
- ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

8.2.1 Potential Beneficial Uses

NSW DEC (2007) indicates that for assessing groundwater quality, it is first necessary to assess the beneficial uses of groundwater and surface water down gradient of the site.

Aside from the five stormwater storage ponds located at the site, the closest surface water receptor is a natural drainage area called Swamp Creek located to the north-east of the site within an area of the buffer zone used for farming. This drainage area discharges to the Hunter River approximately 15km north-east of the site near Maitland.

Surface water within Swamp Creek is described generally as neutral, ranging between pH 7.0 and 7.8 and conductivity was generally fresh, ranging from 626µS/cm to 1520µS/cm. This surface water body is considered to be a fresh water receptor.

Groundwater is expected to follow the topography and flow north-east towards surface water bodies that feed into the Hunter River.

According to the Office of Industry and Investment, NSW, there are 17 licensed groundwater abstractions (bores) located within the site, which are known to be associated with monitoring of groundwater impact. There are no other licensed groundwater bores within 2km of the site.

Potential beneficial uses of groundwater down gradient of the site include:

- Discharge into Swamp Creek, which supports aquatic ecosystems and potentially flows into the Hunter River;
- Recreational use of Swamp Creek for swimming and fishing; and
- Abstraction of water from Swamp Creek may also be used for stock watering and/ or irrigation.

8.2.2 Appropriate Criteria for Groundwater

Based on the review of potential beneficial uses of groundwater and surface water, the criteria for protection of aquatic ecosystems, recreation, irrigation and stock watering will be used.

The investigation levels presented in ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality are considered applicable for the protection of aquatic ecosystems of receiving waters. ANZECC (2000) advocates a site-specific approach to developing guideline trigger values based on factors such as local biological affects data and the current levels of disturbance of the ecosystem. The guidelines present 'low risk trigger values' which are defined as concentrations of key performance parameters below which there is a low risk of adverse biological effects. If these trigger values are exceeded, then further action is required which may include further site-specific investigations to assess potential contamination or management/ remedial action.

Low risk trigger values are presented in Table 3.4.1 of ANZECC (2000) for the protection of 80-99% of species in fresh and marine waters, with trigger values depending on the health of the receiving waters.

Groundwater results will be compared against trigger values for the protection of 95% of freshwater species where available (low reliability values are used in absence of high reliability values). ANZECC (2000) indicates there is currently insufficient data to derive a high reliability trigger value for TPH but propose a low reliability trigger value of 7µg/L. This guideline is considered by industry to be overly conservative and is well below the TPH detection limit that most laboratories can achieve. Therefore the limit of reporting (LOR) will be adopted as a screening trigger for TPH.

Trigger values for cadmium, chromium (III), copper, nickel, lead and zinc can be modified for water hardness in accordance with ANZECC (2000) methodology outlined in Section 3.4.3.2 and Table 3.4.3. The bioavailability of these heavy metals decreases with increasing hardness. Hardness (CaCO₃) was tested in up gradient wells at the Clay Borrow Pit during the 2012 Phase 2 ESA investigations, with results indicating 'extremely hard water' (>400mg/L CaCO₃) as defined by ANZECC (2000). The average hardness (as CaCO₃) reported in MW1, MW3 and MW4 in July 2012 up-gradient from the Clay Borrow Pit (387mg/L) was used to calculate the hardness modified trigger values for this report in accordance with the equations provided in Table 3.4.3 of ANZECC (2000).

Guidelines for Managing Risks in Recreational Water (2008) indicates that a qualitative assessment of recreational use can be undertaken using 10 times the concentrations of chemicals stipulated in the Australian Drinking Water Guidelines (2011). This is based on an assumed contribution for swimming equivalent to 10% of drinking water consumption.

Investigation levels for livestock drinking water are not available for organic contaminants, such a TPH and PAHs. In the absence of available investigation levels, human health drinking water levels will be used from NHMRC (2011) Australian Drinking Water Guidelines for screening criteria.

The ENVIRON (2013) Health Risk Assessment identified a preliminary screening criteria of 1,500µg/L for fluoride for recreational use. This guideline value has been adopted in this evaluation, as Swamp Creek, the closest surface water body, is used recreationally. The guideline that is protective of aquatic ecosystems has not been developed.

A summary of the assessment criteria for groundwater are provided in **Table 8.5**.

Contaminant	95% Protection for Aquatic Ecosystems	Recreational use	Irrigation (long-term trigger value)	Stock Watering	
Aluminium	55	9000 (site-specific)	5000	5000	
Fluoride	-	1500 (site-specific)	1000	2000	
Arsenic (AsIII)	24	100	100	500	
Cadmium	2 (HMTV)	20	10	10	
Chromium (CrIII)	27 (HMTV)	500 (as CrVI)	100	1000	
Copper	12 (HMTV)	20,000	200	500	
Lead	87 (HMTV)	100	2000	100	

Contaminant	95% Protection for	Recreational	Irrigation	Stock Watering	
Contaminant	Aquatic Ecosystems	use	(long-term trigger value)	Stock Watering	
Nickel	97 (HMTV)	200	200	1000	
Zinc	70 (HMTV)	30,000	2000	20,000	
Mercury	0.6	10	2	2	
TPH C6-C36	LOR	-	LOR	LOR	
Benzene	950	10	-	-	
Toluene	180 ^(LR)	250	-	800 (25)	
Ethylbenzene	80 ^(LR)	30	-	300 (3)	
Xylene	200	200	-	600 (20)	
Benzo(a)pyrene	0.2 ^(LR)	0.1	-	0.01	
Naphthalene	16	-	-	-	
Phenanthrene	2	-	-	-	
Fluoroanthene	1	-	-	-	
Cyanide (free)	7	800	-	-	

Notes:

HMTV: hardness modified trigger values calculated in accordance with ANZECC (2000) methodology

LR: low reliability trigger values

Site-specific: fluoride and aluminium recreational values are site-specific and were calculated in the Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON, 2013)

9 Results

The fieldwork program was undertaken in accordance with the DQOs and DQIs outlined in the SAQP (ENVIRON, 2014k). The results have been presented per AEC/ PAEC with the exception of fluoride results in soil, which are discussed in **Section 9.1**.

The borehole, test pit and hand auger logs are included in **Appendix F**. Laboratory reports for soil are included in **Appendix G**. Laboratory reports for groundwater are included in **Appendix H**.

9.1 Fluoride in Soil

Assessment of the potential for fluoride contamination in soil was undertaken at the following areas of concern:

- AEC 2 Anode Waste Pile (results in Table LR1);
- AEC 11 Washdown Bay (results in Table LR4);
- AEC 12 Pot Lines (results in Table LR5);
- PAEC 25 Dry Scrubbers (results in Table LR5);
- PAEC 26 Bake Furnace Scrubber (results in Table LR6);
- PAEC 28 Playing Fields (results in Table LR7);
- PAEC 29 Area East of the Playing Fields (results in Table LR8); and
- PAEC 31 Storage Area west of Pot Lines (results in Table LR9).

Assessment of the Anode Waste Pile, Carbon Plant, Washdown Bay and the Pot Lines in the 2012 Phase 2 ESA included analysis of total fluoride in soil. There are no national or state guidelines for the assessment of fluoride in soil. A literature review of international guidelines was completed for the 2012 Phase 2 ESA and a criterion of 2000mg/kg was used for fluoride for that investigation. The 2012 Phase 2 ESA recommended undertaking a human health risk assessment to determine a site-specific guideline for fluoride.

The risk assessment was completed in 2013 (ENVIRON (April 2013) *Preliminary Screening Level, Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford*) and provided a guideline for fluoride of 17,000mg/kg for industrial landuse. This guideline is based on soluble fluoride, not total fluoride. As such, analysis of soluble fluoride was completed for the current investigation.

Soluble fluoride concentrations at the AECs assessed during this current investigation are considerably lower than total fluoride results reported in the 2012 Phase 2 ESA. The Health Risk Assessment (ENVIRON 2013) indicates that fluoride salts are strongly sorbed to soil, which explains why the soluble fluoride concentrations are considerably lower than total fluoride concentrations.

Soluble fluoride concentrations at the AECs and PAECs assessed during this investigation are below the site specific guideline of 17,000mg/kg.

9.2 AEC 2 Anode Waste Pile

9.2.1 Soil

Soil results for the Anode Waste Pile from the 2012 Phase 2 ESA and the current investigations are included in **Table LR1**. Soil results from the 2012 Phase 2 ESA indicated there are PAHs in soil at the Anode Waste Pile that exceed the NEPM (2013) HIL D criteria for benzo(a)pyrene TEQ. Five additional soil sampling locations were completed in the recent investigations to assess the nature and extent of the PAHs in soil.

Soil results from the additional investigations identified PAHs exceeding the NEPM (2013) HIL D criteria at two sampling locations, SB105 and MW103. Both soil locations comprised crushed anodes in fill material, which is the likely origin of the PAHs.

Sampling locations at the Anode Waste Pile were limited to accessible areas between anode stockpiles where concrete had not been used as a base to the anode stockpile. Concrete was observed to have been used beneath the majority of the area comprising the Anode Waste Pile, with limited directly accessible ground.

The shallow fill material (0-0.2m bgs) comprised benzo(a)pyrene TEQ concentrations exceeding the NEPM (2013) HIL D criteria (40mg/kg), with a 95% Upper Confidence Limit (UCL) of 48mg/kg.

Deeper fill material (0.2-0.6m bgs) comprised benzo(a)pyrene TEQ concentrations below the NEPM (2013) HIL D criteria, aside from at one location (MW103) which is considered to be a 'hot spot' of contamination.

Based on the laboratory results, shallow fill material has been impacted by PAHs associated with the stockpiling of ahead of schedule anodes at the Anode Waste Pile. Sampling undertaken to date shows that deeper fill material has not been impacted, aside from one location on the northern boundary.

9.2.2 Groundwater

Groundwater results for the Anode Waste Pile from the 2012 Phase 2 ESA and the current investigations are included in **Table LR10**. Groundwater results from the 2012 Phase 2 ESA indicated there were PAHs (fluoranthene and benzo(a)pyrene) in groundwater at concentrations exceeding the ANZECC (2000) low reliability guidelines for protection of fresh water species . Two additional wells were installed across (MW103) and down gradient (MW104) of the existing wells.

In the July 2014 sampling event, PAH concentrations in groundwater at the new and existing wells around the Anode Waste Pile were below the ANZECC (2000) guidelines for 95% protection of fresh water species.

Elevated fluoride and aluminium concentrations were detected at the Anode Waste Pile (MW13: F 40,000μg/L, AI 2,500μg/L; MW103: F 12,000μg/L, AI 7,700μg/L; MW104: F 13,000μg/L, AI 1,300μg/L. Groundwater concentrations are discussed further in **Section 9.10.**

9.3 AEC 3 Refuelling Area

9.3.1 Soil

No soil samples were collected in AEC 3 during this current investigation and the 2012 ESA fieldworks. The refueling area has always been surfaced and fuel infrastructure, including the diesel storage tank, bowser and connecting pipework are above ground. The extent of impacts from the refueling area are therefore best understood by assessing impacts to groundwater.

9.3.2 Groundwater

Groundwater results for the Refuelling Area from the 2012 Phase 2 ESA and the current investigations are included in **Table LR10**. Groundwater results from the 2012 Phase 2 ESA indicated there were C_{15} - C_{28} petroleum hydrocarbons in groundwater close to the Refuelling Area. Two additional groundwater monitoring wells were installed during the recent investigations to assess the extent of the petroleum hydrocarbons in groundwater down gradient of the Refuelling Area.

One new monitoring well, MW101, was located immediately down gradient of the diesel bowser. The other new monitoring well, MW102, was located approximately 8m down gradient of the existing monitoring well MW08. This well could not be located any further away from MW08 due to extensive underground services in the roadway and the location of buildings in this area.

Petroleum hydrocarbon concentrations in groundwater at the existing and new wells are generally below the laboratory limit of reporting, aside from minor TPH C_6 - C_9 concentrations (18µg/L) adjacent to the bowser. These concentrations indicate that contamination of groundwater has not occurred from the activities and infrastructure at the refuelling area.

The lack of petroleum hydrocarbons in groundwater down gradient of the Refuelling Area indicates hydrocarbon groundwater contamination issues associated with this area have not been identified.

Fluoride concentrations in three of the four wells and aluminium concentrations in one of the wells exceed the adopted criteria. The elevated fluoride and aluminium concentrations are not associated with any specific activities at the Refuelling Area and are representative of fluoride and aluminium concentrations in groundwater beneath the smelter. Further assessment is included in **Section 9.10**.

9.4 AEC 4 Diesel Spray Area

9.4.1 Soil

Soil results for the Diesel Spray Area from the 2012 Phase 2 ESA and the current investigations are included in **Table LR2**. Soil results from the 2012 Phase 2 ESA indicated there are PAHs in soil at the Diesel Spray Area that exceed the NEPM (2013) HIL D criteria for benzo(a)pyrene TEQ.

Four additional sampling locations were completed in the recent investigations to assess the extent of the PAHs in soil in this area. Results from the current investigation indicate concentrations of PAHs at one location (SB112) at a depth of approximately 0.5m bgs exceed the NEPM (2013) HIL D criteria for benzo(a)pyrene TEQ (40mg/kg).

Of the three locations with PAH concentrations exceeding the criteria, PAH concentrations in borehole MW19 (150.2mg/kg) are more than 2.5 times the guideline and this result is considered a 'hot spot' of contamination.

The 95% Upper Confidence Limit (UCL) of the mean for BaP TEQ concentrations (excluding the hot spot concentration) is 84.6mg/kg, which exceeds the guideline. As such, this area is considered to be contaminated with PAHs at a concentration that requires remediation.

The PAH contamination is likely to be associated with black sandy material identified during the field investigations. It is likely that PAH contaminated fill material was used to fill this area prior to the development of the Diesel Spray Area. It is noted that the PAH contamination is limited to the black sandy fill material and has not impacted other fill materials or the underlying alluvial sands. The PAH contamination has also not impacted groundwater. The vertical extent of the black sandy fill material is between 0.4m and 0.8m bgs, as noted in the borehole logs for this AEC. The lateral extent of the PAH contamination requires further delineation.

9.4.2 Groundwater

Groundwater results for the Diesel Spray Area from the 2012 Phase 2 ESA and the current investigations are included in **Table LR10**. During the 2012 Phase 2 ESA groundwater was analysed for TPH and PAHs, with results below the adopted guidelines. During the current Phase 2 ESA groundwater was analysed for heavy metals, with results below the adopted guidelines except for aluminium concentrations in MW20. Further assessment is included in **Section 9.10**.

9.5 AEC 8 Carbon Plant

9.5.1 Soil

Soil results for the Carbon Plant from the 2012 Phase 2 ESA and the current investigations are included in **Table LR3**. Soil results from the 2012 Phase 2 ESA identified PAHs in shallow soil at a sampling location (MW18) at the western end of the Carbon Plant that exceed the NEPM (2013) HIL D criteria for benzo(a)pyrene TEQ. Thirteen additional soil sampling locations were completed in the recent investigations to assess the extent of the PAHs in soil around the western end of the Carbon Plant.

It is noted that borehole MW18 was located in a garden bed adjacent to the butt tunnel sump that was used to collect anode butts prior to reprocessing. Black stained soils were evident in the garden bed, with the source of the contamination likely to be the deposition of carbon dust from the adjacent butt tunnel sump.

Soil results from the western end of the Carbon Plant identified PAH contamination in shallow soil in three grassed areas near the location of MW18. The benzo(a)pyrene TEQ concentrations at one location, HA107 (140mg/kg at 0.1m bgs and 260mg/kg at 0.2m bgs) were more than 2.5 times the adopted soil guideline and these results are considered a 'hot spot' of contamination.

Aside from the hot spot, the 95% UCL for benzo(a)pyrene TEQ in grassed areas is 47.3mg/kg, which exceeds the NEPM (2013) HIL D criteria. It is noted that PAH concentrations in grassed areas were elevated compared to areas surfaced with bitumen, further indicating that the mechanism of contamination is from aerial deposition primarily

from the Carbon Plant. The analytical soil data indicates that PAH contamination impacts are localised to shallow surface soils and have not impacted soils at depth.

9.5.2 Groundwater

Groundwater results for the Carbon Plant from the 2012 Phase 2 ESA and the current investigations are included in **Tables LR10 and LR11**. Groundwater results from the 2012 Phase 2 ESA indicated there were PAHs (anthracene and benzo(a)pyrene), aluminium and fluoride in groundwater at concentrations exceeding the site criteria near the liquid pitch storage area. Anthracene and benzo(a)pyrene exceeded ANZECC (2000) low reliability trigger values for the protection of 95% of fresh water species. ANZECC (2000) indicates low reliability trigger values should not be used as default guidelines although it is reasonable to use them in the risk-based decision scheme to determine if conditions at the site increase the potential risk.

Two additional wells were installed to target other areas of the Carbon Plant with the potential to have PAH impacts to groundwater, including the Heat Transfer Medium (HTM) oil system (MW105) and the butt crushing plant (MW107). A down gradient monitoring well (MW106) was also installed on the northern side of the Carbon Plant.

PAH concentrations in groundwater at the new and existing wells around the Carbon Plant were below the ANZECC (2000) guidelines for 95% protection of fresh water species. Based on the results of the two rounds of sampling, it is considered that the concentrations of PAHs in groundwater are not significant enough to warrant further investigation.

Fluoride and aluminium were detected at concentrations exceeding the site criteria around the Carbon Plant. The highest concentrations were around the Butt Crushing Plant, which is used to recycle anode butts. Further assessment is included in **Section 9.10**.

9.6 PAEC 26 Bake Furnace Scrubber

9.6.1 Soil

Soil results for the Bake Furnace Scrubber from the current investigations are included in **Table LR6**. Sampling of sediments within a drain near the Bake Furnace Scrubber (D9) was completed during the 2012 Phase 2 ESA. Soil sampling was completed at 10 locations in grassed areas around the Bake Furnace Scrubber to assess the potential for PAH contamination in this area.

Soil results identified PAHs at concentrations exceeding the NEPM (2013) HIL D criteria for benzo(a)pyrene TEQ at three locations, HA115, HA116 and HA117. Two of the concentrations (440mg/kg at HA115 and 120mg/kg at HA117) are more than 2.5 times the guideline (40mg/kg) and these results are considered 'hot spots' of contamination.

At HA115, the elevated PAHs were identified in surface soils comprising black ash/ gravel material, likely spilt Ring Furnace Reacted Alumina, which contains unburnt coal tar pitch. This material was not vertically delineated at this location due to limitations with the method of sampling (hand augering). Vertical and lateral delineation of this material is required.

At HA116 and HA117, the elevated PAHs were identified in brown silty sand fill material. This material has been vertically delineated to a depth of 0.3m bgs during this current investigation and the soil data indicates that PAHs have not impacted underlying fill

materials. Laterally, this material is considered to be confined to the grassed areas in which the soil samples were located, which were below the scrubber duct work.

9.6.2 Groundwater

No groundwater samples were collected in PAEC 26 during this current investigation or the 2012 ESA field works. It is noted that a down gradient well (MW20) indicates the PAHs in shallow soil have not impacted groundwater.

9.7 PAEC 28 Playing Fields

9.7.1 Soil

Soil results for the Playing Fields from the current investigations are included in **Table LR7**. No sampling was completed at the Playing Fields during the 2012 Phase 2 ESA. Soil sampling was completed at 16 locations during the current investigation to assess the potential for buried fill material in this area.

Fill material was identified within two (TP111 and TP116) of the 16 test pits, which were located in a grid pattern across the two Playing Fields. Fill in TP111 comprised silty clay with some house bricks. Two additional test pits were excavated close by, with one house brick found in one of the pits. The bricks were limited to this area. Fill in TP116 comprised a black slag-like fill material used as bedding sand for a PVC irrigation pipe. This fill was not identified in other test pits and is likely confined to the locations of the irrigation pipes. This material was confirmed to be quarry crusher dust by the Hydro Environment Manager, Mr McNaughton.

As limited fill material was identified, analysis was completed on soil samples from seven of the 16 sampling locations, including the fill identified at both TP111 (house bricks) and TP116 (quarry crusher dust used as bedding sand for irrigation pipes (logged as slag)). Concentrations of petroleum hydrocarbon, PAHs and soluble fluoride were below the NEPM (2013) HIL D criteria, indicating there are no soil contamination issues relating to these compounds in this area.

Lead was detected in the sample of quarry crusher dust from TP116 at a concentration of 1600mg/kg, marginally exceeding the NEPM (2013) HIL D criteria of 1500mg/kg. Copper and zinc were detected in this same sample at concentrations exceeding the NEPM (2013) EIL criteria. The surface soils were observed to comprise black quarry crusher dust used as bedding sand for a PVC irrigation pipe. Given the quarry crusher dust is confined to the locations of the irrigation pipes and has not impacted on grass growth at the playing fields, the elevated copper and zinc concentrations are not considered to require further assessment. The lead concentration is considered to be natural to this material and given that a small volume of quarry crusher dust has been used in the drainage lines, further consideration of this material is also not required.

9.7.2 Groundwater

No groundwater samples were collected in PAEC 28 during this current investigation or the 2012 ESA field works.

9.8 PAEC 29 Area East of Playing Fields

9.8.1 Soil

Soil results from the area east of the Playing Fields are included in **Table LR8**. No sampling was completed in this area during the 2012 Phase 2 ESA. Soil sampling was completed at 10 locations during the current investigation to assess the potential for buried fill in this area.

Fill material was identified in nine of the 10 test pit locations, varying in depth from 1.0m to 1.6m. The fill material comprised wastes such as concrete pieces, refractory brick, metal sheeting, metal reinforcement, plastic sheeting, timber, fence posts, broken glass, electrical wire, steel posts and old cable.

Concentrations of heavy metals, soluble fluoride and petroleum hydrocarbons were below the NEPM (2013) HIL D criteria. PAHs were identified in one soil sample from TP117 at a concentration of 310mg/kg, exceeding the NEPM (2013) HIL D criteria for benzo(a)pyrene TEQ. As this concentration is more than 2.5 times the guideline, it is considered a 'hot spot' of contamination.

It is noted that the presence of smelter wastes represents an impact on visual amenity and safety risk to the proposed future commercial/ industrial use of the property.

9.8.2 Groundwater

No groundwater samples were collected in PAEC 29 during this current investigation or the 2012 ESA field works.

9.9 PAEC 31 Storage Area West of Pot Line 3

9.9.1 Soil

Soil results for the Storage Area west of Pot Line 3 are included in **Table LR9**. No sampling was completed in this area during the 2012 Phase 2 ESA. Soil sampling was completed at 13 locations during the current investigation to assess the potential for buried fill in this area.

Minor fill material was identified within 400mm of the site surface across this area, generally comprising gravelly material with minor inclusions of aluminium scrap, metal reinforcement, timber and metal scrap.

Concentrations of heavy metals, soluble fluoride, petroleum hydrocarbons and PAHs were below the NEPM (2013) commercial/ industrial criteria, indicating there are no soil contamination issues in this area.

9.10 Site-Wide Assessment of Groundwater

Groundwater results for the site are included in **Tables LR10** and LR11. During the 2012 Phase 2 ESA, groundwater wells were installed at identified PAECs to assess the potential for groundwater contamination. In addition, one background well (MW06) was installed during the Phase 2 ESA fieldworks which is located off a fire access trail to the south west of the Smelter Site.

During the current investigation, additional wells were installed to further characterise potential groundwater contamination identified in 2012 at the Refuelling Area, the Carbon Plant and the Anode Waste Pile. Results relating to these areas are discussed above.

A second round of groundwater analysis was completed at seven wells installed across the Smelter Site (at locations including the Diesel Spray Area (MW19 and MW20), Flammable Liquid Store (MW9 and MW10), the Washbay (MW11) and the eastern end of the Carbon Plant (MW14 and MW15)) during the current investigation, with analysis for heavy metals, aluminium and fluoride.

Aluminium was detected at the majority of wells at the Smelter Site at concentrations exceeding the ANZECC (2000) guidelines for 95% protection of fresh water species. The aluminium concentration in the background well (MW06, 180μg/L) exceeded the ANZECC (2000) guideline of 55μg/L in the current sampling round. Aluminium concentrations across the Smelter Site vary between <10μg/L and 5000μg/L. Source related impacts appear to have occurred beneath the Anode Waste Pile and at the Carbon Plant, where consistently higher aluminium concentrations were identified. Aluminium concentrations in two of the three down gradient monitoring wells, including MW15 near the eastern boundary and MW106 near the northern boundary, were at similar concentrations to water in the background well. Concentrations in MW20, near the northern boundary, were elevated above background at 1500μg/L.

Fluoride was detected at the majority of wells at the Smelter Site at concentrations exceeding the ENVIRON (2013) site-specific preliminary irrigation (1mg/L), recreational (1.5mg/L) and/or stock watering (2mg/L) guidelines. The highest fluoride concentrations (40mg/L) were detected in groundwater beneath the Anode Waste Pile are likely due to the storage of anodes in this area. High fluoride concentrations were also detected at the western end of the Carbon Plant in MW18. It is noted that fluoride concentrations in this well have reduced from 35mg/L in 2012 to 17mg/L in 2014, indicating the removal of the fluoride source (the recycling of anode butts in this area) has resulted in a reduction of fluoride in groundwater. Longer term monitoring would be required to confirm this trend.

Zinc was identified in the background well (MW06) and at the Anode Waste Pile (MW103) at concentrations exceeding the ANZECC (2000) hardness modified trigger value. Given zinc concentrations across the remainder of the Smelter Site are below the trigger value and up gradient concentrations are elevated, further assessment of zinc in groundwater at the Smelter Site is not required.

It is noted that elevated heavy metal concentrations were identified in 2012 at well MW12 beneath the Anode Waste Pile. These results appear to be anomalous, with results from the current investigation an order of magnitude lower and consistent with results from other wells in this area.

10 Site Characterisation

10.1 Conceptual Site Model

A conceptual site model (CSM) is a site-specific qualitative description of the source(s) of contamination, the pathway(s) by which contaminants may migrate through the environmental media, and the populations (human or ecological) that may potentially be exposed. This relationship is commonly known as a Source-Pathway-Receptor (SPR) linkage. Where one or more elements of the SPR linkage are missing, the exposure pathway is considered to be incomplete and no further assessment is required.

Following field investigations and an assessment of the laboratory results, ENVIRON developed a preliminary CSM in the 2012 Phase 2 ESA report. This CSM has been updated following the results of the current investigation and is described below.

10.1.1 Contamination Sources

The 'contaminant source' is identified by comparison of observed chemical(s) of potential concern (CoPC) concentrations in the media of concern (soil, groundwater) at the site against the adopted screening criteria for this site (refer to **Section 8**). A potential 'source' is identified when the CoPC concentration is reported to be present in the environmental media at the site above assessment criteria which have been derived based on human health and ecological protection.

The soil impacts detected on the Smelter Site are primarily associated with PAH impacts, in particular benzo(a)pyrene in shallow soil. Fluoride concentrations are not considered to be a contaminant source, as fluoride salts are strongly sorbed to soil and are not bio-available, with soluble fluoride concentrations below the site-specific criteria.

A summary of the soil contamination detected on the Smelter Site is provided in **Table 10.1** below.

It is noted that the Capped Waste Stockpile and Clay Borrow Pit have not been included in **Table 10.1** as this AEC has been assessed separately to this investigation.

Table 10.1	Table 10.1: Summary of Site Soil Contamination						
Site Activity	Site Area	Description	Impacts in Soil	Depth of Soil Impact (m bgs)			
Waste stockpiling	Anode Waste Pile (AEC 2)	Long term stockpiling of 'ahead of schedule anodes' in low lying ground adjacent to the Capped Waste Stockpile.	BaP	0-0.2, fill extends to 0.9			
Burial of Waste	Area East of Playing Fields (PAEC 29)	Waste materials, including concrete, refractory brick, metal sheeting, metal reinforcement, plastic sheeting, timber, fence posts, broken glass, electrical wire, steel posts and old cable.	ВаР	0.5, fill extends to 1.0			
Site Operations	Carbon Plant (AEC 8)	Impacts in the vicinity are likely due to the accumulation of dust from the Carbon Plant. Impacts in garden beds and grassed areas.	ВаР	0-0.4			

Table 10.1	: Summary of Site	Soil Contamination		
Site Activity	Site Area	Area Description		Depth of Soil Impact (m bgs)
	Bake Furnace Scrubber (PAEC 26)	Impacts associated with the accumulation of black sandy material likely to be spilt Ring Furnace Reacted Alumina.	BaP	>0.3
		Impacts to shallow surface soil beneath the scrubber duct work.	BaP	0-0.3
Fill Importation	Diesel Spray Area (AEC 4)	Likely that impacted fill material was used to level this portion of the site.	BaP	0.4-0.6

Site-wide groundwater contamination has occurred at the Smelter Site primarily due to the leaching of fluoride and aluminium from smelter materials into groundwater. Fluoride concentrations ranged between 0.22 and 43mg/L, and aluminium concentrations ranged between 0.08 and 13.6mg/L over two sampling rounds.

Impacted sediment is also a media of concern on the Smelter Site at the following areas, and a summary of sediment concentrations reported during the initial Phase 2 investigation is presented in **Appendix A**:

- Drainage Lines Near Anode Waste Pile and Capped Waste Stockpile (AEC 5): PAH
 contaminated sediments have accumulated in the drainage line adjacent to the
 Anode Waste Pile and Capped Waste Stockpile.
- East Surge Pond (AEC 6): PAH contaminated sediments have accumulated within the East Surge Pond, which is immediately down gradient of the drainage lines near the Anode Waste Pile and the Capped Waste Stockpile; and
- West Surge Pond (AEC 15): Total fluoride at concentrations exceeding the sitespecific criteria were detected here. Consistent with soil data, it is likely that analysing for soluble fluoride in sediment will result in West Surge Pond no longer being an AEC. Sampling was not conducted as part of this investigation due to sampling difficulties encountered during the Phase 2 ESA. The sediment can be sampled once the sediments have been excavated and stockpiled.

10.1.2 Human and Ecological Receptors

The receptors identified in this CSM were based on a current and future General Industrial (IN1) and Heavy Industrial (IN3) use of the Smelter Site. Receptors in the hydraulic downgradient area of the Buffer Zone were also considered during development of this CSM due to potential off-site migration of groundwater impacts and dust deposition from historical sources. Land use in this down-gradient area currently includes the Kurri Kurri Speedway and Junior Motorcycle Club, farmland and vacant bushland.

Receptors not down hydraulic-gradient, such as residents to the south-east, were not considered because:

- recent studies conducted in the Buffer Zone did not identify impacts to surface soil (ENVIRON, 2014a-j);
- they are not located down -hydraulic gradient and therefore any migrating groundwater impacts are unlikely to impact these receptors; and
- the source of aerial dust deposition from the Smelter Site to off-site areas is no longer present because the Smelter has ceased operations. Impacts to Buffer Zone areas has been assessed and reported sepearately (ENVIRON, 2014a-j).

The human receptors identified included:

- current adult Smelter employees, contractors and visitors (non-intrusive site receptors);
- current and future on-site intrusive maintenance and construction workers;
- future on-site commercial/industrial adult employees; and
- off-site recreational users of the Kurri Kurri Speedway and Junior Motorcycle Club located approximately 260m down-gradient of the Smelter Site in the Buffer Zone.

It is noted that there are no current users of the playing fields and due to the industrial nature of the plans for the future site use, there will be no future users of the playing fields, as such human receptors associated with the playing fields do not exist.

The ecological receptors identified included:

- current and future livestock within the Buffer Zone including cattle; and
- native and introduced flora and fauna within the buffer zone including aquatic receptors in Swamp Creek and Wentworth Swamp.

10.1.3 Exposure Pathways

In order for a human receptor to be exposed to a chemical contaminant derived from a site, there should be an exposure pathway linking the source of contamination and the exposed population. An exposure pathway describes the course a chemical or physical agent takes from the source to the exposed individual and generally includes the following elements:

- a source and mechanism of chemical release;
- a retention or transport medium (or media where chemicals are transferred between media);
- a point of potential human contact with the contaminated media; and
- an exposure route (e.g. ingestion, inhalation) at the point of exposure.

A detailed assessment of the potential exposure pathways for the receptors identified above is presented in **Table 10.2** below.

Shallow Surface Soil	Potentially	Complete Source-Pat	Justification		
	Current & future on-site employees (non-intrusive)	Current & future on-site Intrusive Maintenance and Construction Workers	Recreational users of Kurri Kurri Speedway	Buffer Zone Ecological Receptors	
Dermal contact with soil & dust	N	Υ	N	N	Shallow (0-0.4m bgs) impacted soil
Incidential ingestion of dust/soil	N	Υ	N	N	reported on-site.
Dermal contact with dust only	Y	N	N	N	Shallow (0-0.4m bgs) impacted soil reported on-site in unpaved areas – potenital for dust generation. The source of aerial dust deposition to offsite areas no longer present as
Outdoor dust inhalation	Y	Υ	N	N	Smelter is closed and soil impacts not identified in previous studies in the Buffer Zone (ENVIRON, 2014a-j).
Indoor dust inhalation	Y	N	N	N	Outdoor dust can be transported indoors.
Indoor inhalation of vapours	N	N	N	N	No volatile chemicals detected in
Outdoor inhalation of vapours	N	N			Phase 2 investigations above assessment criteria
Vegetable/fruit ingestion	N	N	N	N	No vegetable/fruit grown on-site or off site in the down-gradient Buffer Zone area. Soil impacts not identified in previous studies in the Buffer Zone (ENVIRON, 2014a-j)
Ingestion of Buffer Zone flora (e.g.grass)	N	N	N	N	Cattle in the down-gradient Buffer Zone consume grass however site-specific studies have shown cattle have acceptable levels of fluoride (AECOM 2013). The source of aerial dust deposition to off-site areas no longer present as Smelter is closed.
BaP Impacts to Buried Fill at the		(0.4-0.6m bgs)		1	
Dermal contact with soil and dust	N	Y	N	N	Impacted fill material identified at a
Incidential ingestion of dust/ soil	N	Υ	N	N	depth of 0.4-0.6m bgs at the Diesel

Shallow Surface Soil	Potentially	Complete Source-Pat	Justification		
	Current & future on-site employees (non-intrusive)	Current & future on-site Intrusive Maintenance and Construction Workers	Recreational users of Kurri Kurri Speedway	Buffer Zone Ecological Receptors	
					Spray Area.
Dermal contact with dust only	N	N	N	N	No dust generation from impacted
Outdoor dust inhalation	N	N	N	N	material buried at 0.4-0.6m bgs.
Indoor dust inhalation	N	N	N	N	
Indoor inhalation of vapours	N	N	N	N	No volatile chemicals detected in
Outdoor inhalation of vapours	N	N	N	N	Phase 2 investigations above assessment criteria
Vegetatble/ fruit ingestions	N	N	N	N	No vegetable/fruit grown on-site or off site in the down-gradient Buffer Zone area. Soil impacts not identified in previous studies in the Buffer Zone (ENVIRON, 2014a-j)
Groundwater				1	T 2
Dermal contact	N	Y	N	N	Shallow (~0.5-3mbgs) impacted
Incidential ingestion	N	Y	N	N	groundwater detected on-site. During times of flooding, groundwater exflitrates to the surface in the Buffer Zone and can flow to surface water bodies. Studies have shown that concentrations of fluoride and aluminium in surface waters in the Buffer Zone have shown that there have been no impacts on ecology at the downgradient receptor, Swamp Creek (ENVIRON, 2014a).
Potable ingestion	N	N	N	N	No current on-site abstraction wells for potable use of groundwater.
Outdoor inhalation of vapours	N	N	N	N	No volatile chemicals detected in
Indoor inhalation of vapours	N	N	N	N	Phase 2 investigations above assessment criteria

Shallow Surface Soil	Potentially	Complete Source-Pat	c ? (Y/N)	Justification	
	Current & future on-site employees (non-intrusive)	Current & future on-site Intrusive Maintenance and Construction Workers	Recreational users of Kurri Kurri Speedway	Buffer Zone Ecological Receptors	
Groundwater to surface water pathways	N	N	N	N	Open accessible stormwater drains and ponds on-site are managed under the site's stormwater management system. During times of flooding, groundwater in the Buffer Zone can exfiltrate and flow to surface water bodies. Groundwater can also discharge to surface bodies through groundwater flowpaths. Studies or groundwater and surface water receptors in the Buffer Zone have shown that there have been no impacts on the ecology of the downgradient receptor, Swamp Creek (ENVIRON, 2013a), see Section 3.4.4.
Irrigation pathways	na	na	N	N	No current on-site or off-site abstraction wells for irrigation purposes.
Sediment					
Dermal contact	N	Υ	na	na	Impacted sediments detected in the
Incidential ingestion	N	Y	na	na	East Surge Pond and associated drainage lines on-site.
Outdoor inhalation of vapours	N	N	N	N	No volatile chemicals detected in
Indoor inhalation of vapours	N	N	N	N	Phase 2 investigations above assessment criteria

Notes: na: exposure pathway not applicable

10.2 Further Investigations

The following AECs and PAECs were not assessed as part of this Phase 2 ESA and require investigations in the future:

- AEC 15 West Surge Pond: Sampling of the sediment for soluble fluoride should be completed once the sediment is excavated and stockpiled.
- PAEC 27 Substations: Substations are currently live and in use and cannot be
 assessed until they are isolated. Assessment of each substation for Polychlorinated
 Biphenyls (PCBs) and Total Petroleum Hydrocarbons (TPH) should be completed
 once the substations are switched off, isolated and demolition has commenced.
- PAEC 30 Area East of the Clay Borrow Pit: The area has been covered with excess Virgin Excavated Natural Material (VENM) from the construction of the Hunter Expressway. Assessment of buried fill material in this area cannot be completed until the VENM has been removed.

10.2.1 Fluoride Impacts in Groundwater

As illustrated in **Table 10.2**, groundwater impacted with fluoride was identified as a concern for on-site maintenance and construction employees. Fluoride concentrations in groundwater ranged between 0.22 and 43mg/L over two groundwater monitoring rounds, exceeding the ENVIRON (2013) site-specific preliminary screening criteria of 1.5mg/L for recreational use. As the screening criterion is for recreational use, a health risk assessment and derivation of site-specific criterion for fluoride for maintenance and construction employees is recommended.

10.3 Remediation

Based on the contamination identified during the 2012 Phase 2 ESA and the current investigations, ENVIRON recommends remediation of contamination at the AECs included in **Table 10.3**.

Based on the information presented in **Table 10.3**, a Remedial Action Plan should be developed for the AECs. The Remedial Action Plan should be prepared in accordance with NSW EPA (2011) Guidelines for Consultants Reporting on Contaminated Sites. As remediation is likely to occur following or during the demolition of the buildings on the Smelter Site, the RAP should consider impacts to surface soils that may occur during demolition. Validation sampling programs for each area should consider contamination identified in this Phase 2 ESA, as well as additional contamination impacts to surface soils that may occur through demolition.

No.	PAEC	Approximate Volume (m³)	Media	Contaminants	Mechanism for Contamination	Remediation Required	
1	Capped Waste Stockpile	NA	Soil and groundwater	The Capped Waste Stockpile has been assessed separately to this Phase 2 ESA.			
2	Anode Waste Pile	Approximately 1,300m ³	Soil	PAHs	Stockpiling of anodes	Delineation of the hotspot following recycling of anode stockpile Remediation of shallow fill material following	
						delineation	
4	Diesel Spray Area	Unknown	Soil	PAHs	Use of contaminated soils as fill material.	-Delineation of PAH contaminated fill material required prior to remediation	
5	Drainage Lines	Approximately 200m ³	Sediment	PAHs	Accumulation of PAH contaminated sediments in the drainage lines around the Anode Waste Pile and the Capped Waste Stockpile.	-Remediation of PAH contaminated sediments	
6	East Surge Pond	Approximately 2,500m ³	Sediment	PAHs	Accumulation of PAH contaminated sediments.	-Remediation of PAH contaminated sediments	

No.	PAEC	Approximate Volume (m³)	Media	Contaminants	Mechanism for Contamination	Remediation Required
8	Carbon Plant (western end only)	Approximately 1000m ³	Accessible soil	PAHs	Accumulation of PAHs associated with dust from the Carbon Plant.	-Remediation of PAH contaminated shallow soils in garden beds and grassed areas to the south of the western end of the Carbon Plant.
26	Bake Furnace Scrubber	Approximately 1,000m ³	Soil	PAHs	Accumulation of waste from the scrubber in surface soils.	Delineation and remediation of the PAH hot spot at HA115 Remediation of PAHs in surface soils in grassed areas beneath the scrubber duct work.
29	Area East of Playing Fields	Approximately 10,000m ³	Soil	PAHs	Burial of wastes in fill.	-Excavation and segregation of wastes for recycling and disposal to remove aesthetic impacts) -Validation of the removal of the PAH hot spot from test pit TP117
30	On-site groundwater	NA	Groundwater	Fluoride, aluminium, PAHs	Leaching of contaminants into groundwater	-Complete Health Risk Assessment to assess whether remediation is required

11 Conclusions and Recommendations

ENVIRON Australia Pty Limited (ENVIRON) was commissioned by Hydro Aluminium Kurri Kurri Limited (Hydro) to complete Stage 2 of a Phase 2 Environmental Site Assessment (ESA) at the Hydro Kurri Kurri Aluminium Smelter located of Hart Road, Loxford, New South Wales. The site incorporates 60ha of Smelter Site and 2,000ha of surrounding buffer land. The initial Stage 1 phase of work was completed in November 2012. The objective of the Stage 2 investigations was to build upon the results of the Stage 1 in assessing the presence of contamination at the Smelter site and to assess the suitability of the site for the purposes of General Industrial (IN1), Heavy Industrial (IN3) and Environmental Conservation (E2) landuse.

The scope of work for the Stage 2 investigations included the following:

- Review of previous investigations and identification of data gaps;
- Development of a Sampling, Analysis and Quality plan (SAQP);
- Soil sampling at five areas of environmental concern (AECs) identified from the Stage 1 investigations and five new potential areas of environmental concern (PAECs);
- The installation of seven new groundwater wells at three of the AECs;
- Groundwater sampling of the seven new and 17 existing wells;
- Laboratory analysis for soil and groundwater samples;
- · Assessment of laboratory results against site criteria;
- Refinement of the conceptual site model (CSM);
- Identification of additional site investigation works to refine the CSM; and
- Assessment of areas requiring remediation.

The CSM assumed a future industrial site landuse, and considered off-site receptors in the down-hydraulic gradient area. The following complete source-pathway-receptor linkages were identified in the CSM:

- Inhalation of dust generated from surface soil impacts by current and future on-site industrial adult employees;
- Direct contact with impacted soil and groundwater by current and future on-site intrusive maintenance workers;
- Direct contact with impacted sediment by current and future on-site industrial employees.

In order to further refine the CSM, a number of targeted investigations are required to be performed at the West Surge Pond, the Sub-Stations and the Area East of the Clay Borrow Pit.

Based upon the source-pathway-receptor linkages identified in the refined CSM, surface soil and sediment remediation at the following AECs is required:

- Capped Waste Stockpile: This AEC has been assessed separately to this investigation;
- Anode Waste Pile: PAH contamination in surface soils to 0.2 bgs. Delineation and remediation of PAH hot spot at MW103;
- Diesel Spray Area: PAH contamination of fill material at 0.4m to 0.6m bgs.
 Delineation and remediation required;
- Drainage Lines: PAH contamination of sediments in drainage lines around the Capped Waste Stockpile and the Anode Waste Pile;
- East Surge Pond: PAH contamination of sediments;
- Carbon Plant: PAH contamination of shallow soils to 0.4m bgs in grassed areas and gardens beds at the western end of the Carbon Plant;
- Bake Furnace Scrubber: PAH contamination in shallow soils to 0.3m bgs in grassed areas below the scrubber duct work. Delineation of remediation of PAH hot spot at HA115; and
- Area east of the Playing Fields: Buried wastes to be remediated for aesthetic reasons. Delineation and remediation of PAH hot spot identified in south east corner at TP117.

Vertical delineation of the soil contamination at each AEC was completed as part of the Stage 2 investigations. The majority of the soil contamination identified is PAH (primarily benzo(a)pyrene) contamination in fill, which has not extended into the underlying alluvial sands and has not impacted groundwater. Lateral delineation of soil contamination has been completed to the extent practicable at this time given buildings, stockpiles, roads and services limit potential sampling locations. Lateral delineation of soil contamination and hot spots will be required at some AECs (e.g. Anode Waste Pile, Diesel Spray Area) prior to remediation.

ENVIRON recommends the preparation of a Remedial Action Plan (RAP) for the Smelter Site to develop remediation and validation plans for each of the seven AECs identified above. The Remediation Action Plan should be prepared in accordance with NSW EPA (2011) Guidelines for Consultants Reporting on Contaminated Sites. As remediation is likely to occur following or during the demolition of the buildings on the Smelter Site, the RAP should consider impacts to surface soils that may occur during demolition. Validation sampling programs for each area should consider contamination identified in this Phase 2 ESA, as well as additional contamination impacts to surface soils that may occur through demolition.

ENVIRON recommends a health risk assessment be completed to derive site-specific criterion for fluoride for maintenance and construction employees and assess the requirement for remediation of fluoride in groundwater beneath the Smelter Site.

Hydro has separately engaged an EPA-accredited Site Auditor to assess the appropriateness of the Remedial Action Plan and to assess if the site can be made suitable for the proposed landuse by implementation of the Remedial Action Plan. Following the completion of the remediation, the Site Auditor will provide a Site Audit Statement certifying that the site is suitable for the proposed use.

12 References

AECOM (2 June 2013) 'Hydro Aluminium – 2012 Annual Environmental Management Review'

ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Canadian Council of Ministries of the Environment (2010) Candian Soil Quality Guidelines, Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects) Scientific Criteria Document (revised)

ENVIRON (March 2012) 'Sampling, Analysis and Quality Plan, Kurri Kurri Aluminium Smelter' (2012a)

ENVIRON (1 November 2012) 'Phase 2 Environmental Site Assessment, Kurri Kurri Aluminium Smelter' (2012b)

ENVIRON (March 2013) 'Tier 2 Ecological Risk Assessment, Kurri Kurri Aluminium Smelter' (2013a)

ENVIRON (2 April 2013) 'Preliminary Health Screening Level, Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford' (2013b)

ENVIRON (22 October 2013) 'Phase 1 ESA, Hydro Kurri Kurri Aluminium Smelter' (2013c)

ENVIRON (April 2014) 'Phase 2 Environmental Site Assessment, Parcel 9' (2014a)

ENVIRON (May 2014) 'Phase 2 Environmental Site Assessment, Parcel 2' (2014b)

ENVIRON (May 2014) 'Phase 2 Environmental Site Assessment, Parcel 5' (2014c)

ENVIRON (May 2014) 'Phase 2 Environmental Site Assessment, Parcel 17' (2014d)

ENVIRON (May 2014) 'Phase 2 Environmental Site Assessment, Parcel 18' (2014e)

ENVIRON (May 2014) 'Phase 2 Environmental Site Assessment, Parcel 7' (2014f)

ENVIRON (June 2014) 'Phase 2 Environmental Site Assessment, Parcel 3'(2014g)

ENVIRON (June 2014) 'Phase 2 Environmental Site Assessment, Parcel 6' (2014h)

ENVIRON (June 2014) 'Phase 2 Environmental Site Assessment, Parcel 8' (2014i)

ENVIRON (June 2014) 'Phase 2 Environmental Site Assessment, Parcel 16' (2014j)

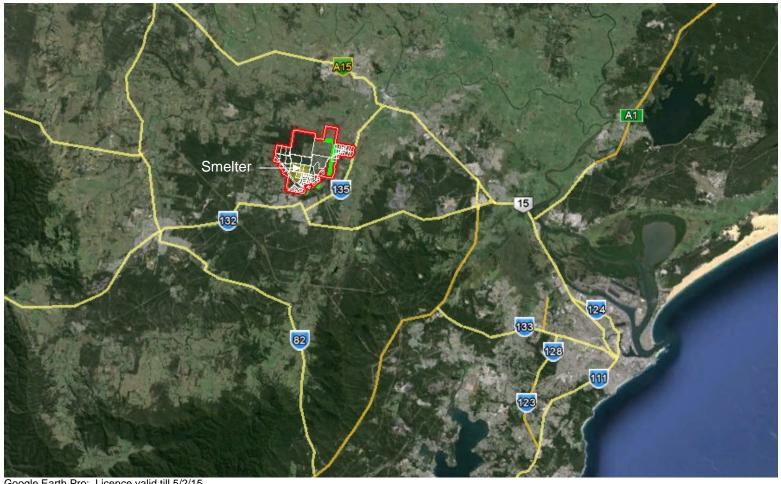
ENVIRON (June 2014) 'Hydro Aluminium Kurri Kurri, Sampling, Analysis and Quality Plan' (2041k)

ENVIRON (24 July 2014) Remedial Action Work Plan, Clay Borrow Pit Area, Kurri Kurri, NSW'

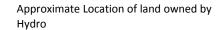
National Environment Protection Council (1999) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM 1999)

National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM 2013)

National Health and Medical Research Council (2008) Guidelines for Managing Risks in Recreational Water


National Health and Medical Research Council (2011) Australian Drinking Water Guidelines

NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (Second Edition)


NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination

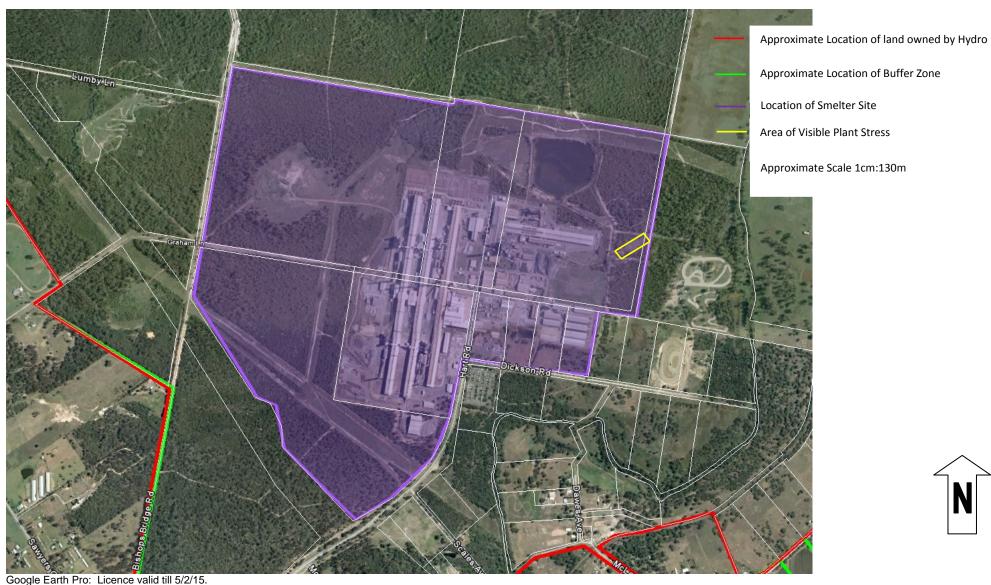
NSW EPA (1994) Guidelines for Assessing Service Station Sites

Figures

Google Earth Pro: Licence valid till 5/2/15.

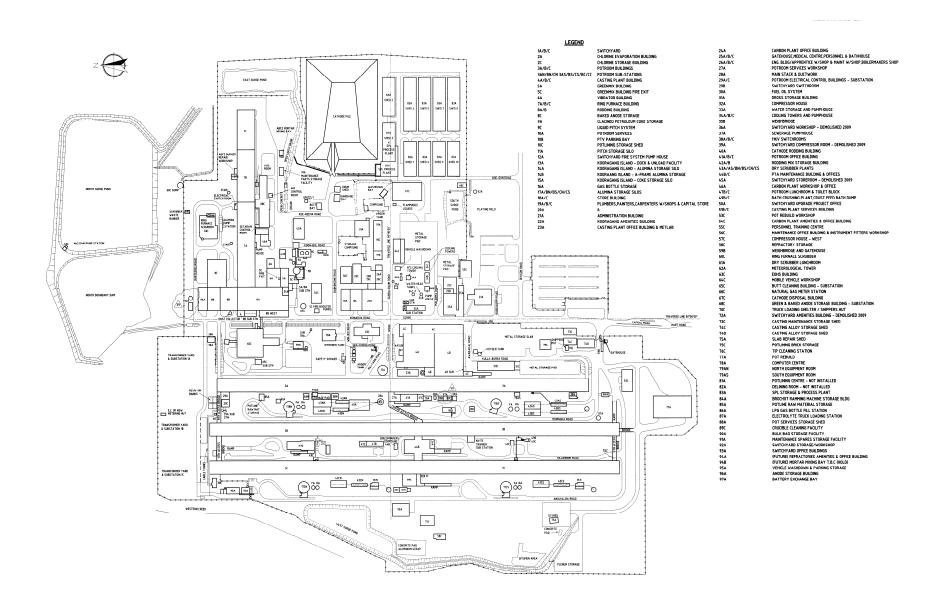
Approximate Location of Buffer Zone

Approximate Scale 1cm:4.5km



HYDRO AUSTRALIA PHASE 2 ESA

SITE LOCATION PLAN - SMELTER LOCATION


JOB NO: AS130383 DATE: August 2014 FIGURE 1

SMELTER SITE BOUNDARY HYDRO AUSTRALIA PHASE 2 ESA

JOB NO: AS130383 DATE: August 2014 FIGURE 2

HYDRO AUSTRALIA PHASE 2 ESA

SMELTER LAYOUT

JOB NO: AS130383 DATE: August 2014 FIGURE 3

- 2014 groundwater well locations
- 2014 soil sampling locations
- 2012 groundwater well and soil sampling locations
- Soil sampling locations with PAHs > guidelines MW103
- Approximate extent of soil contamination
 - Approximate Scale 1cm:5m

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

AEC 2 - Anode Waste Pile

S ENVIRON

JOB NO: AS130383 DATE: August 2014 FIGURE 4

- △ 2014 groundwater well locations
- ▲ 2012 groundwater well and soil sampling locations
- ▲ 2012 soil sampling locations

Approximate Scale is 1cm:2m

Google Earth Pro: Licence valid till 5/2/15.

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

AEC 3 – Refuelling Area

ENVIRON

JOB NO: AS130383 DATE: August 2014 FIGURE 5

- 2014 soil sampling locations
- 2012 groundwater well locations
- 2012 soil sampling locations

MW19 Fill 1

Soil sampling locations with PAHs > guidelines

Likely extent of soil contamination

Approximate Scale is 1cm:1.5m

Google Earth Pro: Licence valid till 5/2/15.

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

AEC 4 – Diesel Spray Area

JOB NO: AS130383 DATE: August 2014 FIGURE 6

- 2014 groundwater well locations
- △ 2014 soil sampling locations
- ▲ 2012 groundwater well locations
- 2012 soil sampling locations
- HA111 Soil sampling locations with PAHs > guidelines
 - Areas of visible staining
- Approximate extent of shallow soil contamination
 - Approximate Scale 1cm:12m

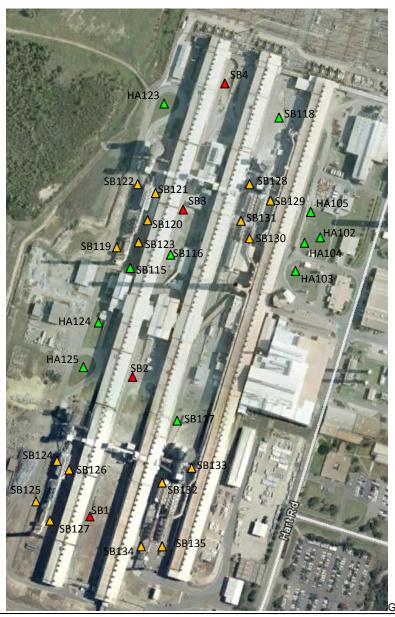
Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

AEC 8 – Carbon Plant

S ENVIRON

- △ 2014 soil sampling locations
- 2012 sampling locations

 Approximate Scale 1cm:1.5m


Google Earth Pro: Licence valid till 5/2/15.

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

AEC 11 – Washdown Bay

JOB NO: AS130383 DATE: August 2014 FIGURE 8

- △ 2014 soil sampling locations AEC 25
- △ 2014 soil sampling locations AEC 12
- ▲ 2012 soil sampling locations

 Approximate Scale 1cm:53m

Google Earth Pro: Licence valid till 5/2/15.

JOB NO: AS130383 DATE: August 2014 FIGURE 9

▲ 2014 soil sampling locations

2012 soil sampling locations

HA116 Soil sampling locations with PAHs > guidelines

Approximate extent of shallow soil contamination

Approximate Scale 1cm:5m

Google Earth Pro: Licence valid till 5/2/15.

PAEC 26 – Bake furnace Scrubber

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

JOB NO: AS130383 DATE: August 2014 FIGURE 10

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

PAEC 28 – Playing Fields

SENVIRON

△ 2014 soil sampling locations

TP117 Soil sampling location with PAHs > guidelines

Approximate Scale 1cm:9m

Google Earth Pro: Licence valid till 5/2/15.

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

PAEC 29 – Area East of Playing Fields

JOB NO: AS130383 DATE: August 2014 FIGURE 12

▲ 2014 soil sampling locations

Approximate Scale 1cm:25m

Hydro Aluminium Kurri Kurri

Stage 2 Phase 2 ESA

PAEC 31 – Storage Area West of Pot Line 3

SENVIRON JOB NO: AS130383 DATE: August 2014 FIGURE 13

Tabulated Laboratory Results for Soil and Groundwater

TABLE LR1 Soil Analytical Results for AEC 2 Anode Waste Pile (mg/kg)

TABLE LR1 Soil Analytica	al Results t	for AEC 2 And	de Waste Pil	e (mg/kg)													
Sample Identification					MW12	MW12	MW13	SB103	SB103	SB104	SB104	SB105	SB105	MW103	MW103	MW104	MW104
Sample Depth (m)	PQL	HIL D ^A	EIL C/I ^B	ESL C/I	0-0.2	0.4-0.6	0.2-0.4	0-0.1	0.3-0.4	0-0.1	0.3-0.4	0-0.1	0.3-0.4	0-0.1	0.3-0.4	0-0.1	0.3-0.4
Date		HIL D	EIL C/I	LOL C/I	17-Apr-12	17-Apr-12	17-Apr-12	30-Jun-14	30-Jun-14	30-Jun-14							
Sample Profile					FILL	FILL	FILL	FILL	ESTUARINE	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL
PAEC Sampled					AWP	AWP	AWP										
Sample collected by					KJG	KJG	KJG										
Metals																	
Aluminium	50	NL*	-	-	55800	3260	36700	-	-		-	-	-	-		-	-
Arsenic	1	3000	160	-	10.1	1	10.5	-	-	-	-	-	-	-	-	-	-
Cadmium	0.1	900	-	-	1.4	<0.1	<0.1	-	-		-	-	-	-	-	-	-
Chromium	1	3600	320**	-	46.8	4.4	10.9	-	-		-	-	-	-	-	-	-
Copper	2	240000	210**	-	41.1	0.3	6.7	-	-	-	-	-	-	-	-	-	-
Nickel	1	6000	140**	-	103	3.4	79.9	-	-	-	-	-	-	-	-	-	-
Lead	2	1500	1800	-	34.1	2.6	7.5	-	-		-	-	-	-	-	-	-
Zinc	5	400000	440**	-	304	1	21.3	-	-		-	-	-	-	-	-	-
Mercury (inorganic)	0.1	730	-	-	<0.1	<0.1	<0.1	-	-		-	-	-	-		-	-
Fluoride (soluble)	40	17000*	-	-	-			890	24	1077	270	970	110	410	430	64	45
Fluoride (total)	40	-	-	-	47100	1010	17700	-	-	,	-	-	-	-		-	-
Non Metallic Inorganics																	
Total Cyanide (free)	1	1500	-	-	<1	1	<1	-	-		-	-	-	-		-	-
Polycyclic Aromatic Hydroca	arbons (PAF	1)															
Naphthalene	0.5	1-	370	-	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.5	-	-	-	< 0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.5	-	-	-	1.4	<0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Fluorene	0.5	-	-	-	0.9	<0.5	<0.5	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Phenanthrene	0.5	-	-	-	15.2	<0.5	5	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8
Anthracene	0.5	1-	-	-	4.1	<0.5	1.1	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Fluoranthene	0.5	-	-	-	56.5	<0.5	20.4	13	13	13	13	13	13	13	13	13	13
Pyrene	0.5	-	-	-	52.2	<0.5	20.5	12	12	12	12	12	12	12	12	12	12
Benz(a)anthracene	0.5	-	-	-	52.6	<0.5	17.3	11	11	11	11	11	11	11	11	11	11
Chrysene	0.5	1-	-	-	74.3	<0.5	17	11	11	11	11	11	11	11	11	11	11
Benzo(b)&(k)fluoranthene	1	-	-	-	88.6	<0.5	26.6	25	25	25	25	25	25	25	25	25	25
Benzo(k)fluoranthene	0.5	-	-	-	31.2	<0.5	11.8	-	-		-	-	-	-	-	-	-
Benzo(a) pyrene	0.5	-	-	72 ^C	29.4	<0.5	16.1	15	< 0.05	18	21	37	12	28	<u>160</u>	24	0.21
Indeno(1,2,3-c,d)pyrene	0.5	-	-	-	20.7	<0.5	11.4	14	<0.1	16	18	32	8.2	27	120	18	0.2
Dibenz(a,h)anthracene	0.5	1-	-	-	7.2	<0.5	2.5	1.4	<0.1	2	1.7	5.2	0.9	4.1	22	2.7	<0.1
Benzo(g,h,i)perylene	0.5	-	-	-	24	<0.5	14.5	12	<0.1	13	16	27	6.6	21	100	15	0.2
Benzo(a) pyrene TEQ		40			56.9	<0.5	25.6	21	<0.5	26	30	55	16	42	250	34	<0.5
Sum of reported PAH		4000			458	<0.5	165	120	NIL (+)VE	140	180	300	85	210	1400	150	1.7

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

Page 1 of 1 Environ

A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^c Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects)

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is at a concentration greater than physically possible in soil, and therefore the criteria is defined as 'Non-Limiting' or NL.

PQL = Practical Quantitation Limit.

<LOR or <value = Less than the laboratory Limit of Reporting

^{*} Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)'

^{**} EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

TABLE LR2 Soil Analytical Results for AEC 4 Diesel Spray Area (mg/kg)

Sample Identification				,	SB17	SB18	MW19	MW19	SB111	SB111	SB112	SB112	SB112	SB113	SB113	SB114	SB114
Sample Depth (m)	PQL				0.3-0.4	0.5-0.6	FILL 1	FILL 2	0.0-0.1	0.4-0.5	0.0-0.1	0.4-0.5	0.8-0.9	0.0-0.1	0.4-0.5	0.0-0.1	0.4-0.5
Date	1 02	HIL D ^A	EIL C/I ^B	ESL C/I	18-Apr-12	18-Apr-12	19-Apr-12	19-Apr-12	01-Jul-14								
OI- Dfil-				1	FILL	FILL		FILL	Eu l	F., 1	T ===	F# 1	FILL	F	F# 1	FILE	F.,
Sample Profile					FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL
PAEC Sampled					DSA	DSA	DSA	DSA	DSA	DSA	DSA	DSA	DSA	DSA	DSA	DSA	DSA
Sample collected by					KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG
Polycyclic Aromatic Hydroca	rhons (PAH	1)															
Naphthalene	0.5	-	370	-	<0.5	<0.5	<4.0	<0.5	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.5	-	-	-	<0.5	<0.5	<4.0	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.5	-	-	-	<0.5	3.8	8.4	1.6	<0.1	<0.1	<0.1	2	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	0.5	-	-	-	<0.5	2.2	4.2	0.8	<0.1	<0.1	<0.1	0.9	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.5	-	-	-	<0.5	30.2	46.7	7.8	<0.1	0.4	<0.1	8.1	<0.1	0.2	<0.1	0.1	<0.1
Anthracene	0.5	-	-	-	<0.5	6.3	9.6	1.6	<0.1	<0.1	<0.1	1.7	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	0.5	-	-	-	<0.5	59.7	137	21.6	0.4	1.5	<0.1	30	<0.1	0.4	0.1	1	0.2
Pyrene	0.5	-	-	-	<0.5	59.1	133	21.7	0.5	1.6	<0.1	32	<0.1	0.4	0.1	1	0.2
Benz(a)anthracene	0.5	-	-	-	<0.5	46.7	103	24.3	0.3	1.2	<0.1	29	<0.1	0.3	<0.1	1.4	0.2
Chrysene	0.5	-	-	-	<0.5	45.6	97.3	23.5	1	1.1	<0.1	29	<0.1	0.6	0.1	2.7	0.2
Benzo(b)&(k)fluoranthene	1	-	-	-	<0.5	60.3	140	31	0.9	2.3	<0.2	64	<0.2	0.9	0.2	4.1	0.5
Benzo(k)fluoranthene	0.5	-	-	-	<0.5	21.2	47.7	10		-	-	-	-	-	-	-	-
Benzo(a) pyrene	0.5	-	-	72 ^C	<0.5	43.4	<u>101</u>	19.2	0.48	1.5	0.06	38	< 0.05	0.42	0.12	0.96	0.16
Indeno(1,2,3-c,d)pyrene	0.5	-	-	-	<0.5	41.6	57.5	17.5	0.3	1.1	<0.1	28	<0.1	0.3	<0.1	0.6	0.1
Dibenz(a,h)anthracene	0.5	-	-	-	<0.5	8.8	12.8	4.6	<0.1	0.1	<0.1	3.8	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(g,h,i)perylene	0.5	-	-	-	<0.5	46.1	65	19.9	0.4	1	<0.1	23	<0.1	0.3	<0.1	0.8	0.1
Benzo(a) pyrene TEQ		40	-	-	<0.5	70.1	150.2	31.6	1	2	<0.5	55	<0.5	1	<0.5	2	<0.5
Sum of reported PAH	-	4000	-	-	<0.5	475	963	205	4.3	12	0.06	290	NIL (+)VE	3.7	0.66	13	1.7

All results are in units of mg/kg.

NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is at a concentration greater than physically possible in soil, and therefore the criteria is defined as 'Non-Limiting' or NL. PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^c Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects) Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

TABLE LR3 Soil Analytical Results for AEC 8 Carbon Plant

		/ ALO 0 00	irbon Piant																	
Sample Identification					SB11	SB12	SB13	MW14	MW15	MW16	MW16	MW17	MW17	MW18	MW18	SB108	SB109	SB110	MW105	MW105
Sample Depth (m)	PQL	HIL D ^A	EIL C/IB	ESL C/I	0.2-0.4	1.8-1.9	1.0-1.2	0-0.4	0.1-0.4	0.2-0.4	1.8-2.0	0.2-0.4	0.8-1.0	0-0.2	0.8-1.0	0-0.1	0-0.1	0-0.1	0.15-0.25	0.3-0.4
Date		HILD	EIL C/I	LSL C/I	17-Apr-12	18-Apr-12	18-Apr-12	19-Apr-12	19-Apr-12	18-Apr-12	18-Apr-12	18-Apr-12	18-Apr-12	19-Apr-12	19-Apr-12	30-Jun-14	01-Jul-14	01-Jul-14	30-Jun-14	30-Jun-14
		-			-	•	-	-	-				-			-	-	-	-	
Sample Profile					FILL	FILL	FILL	FILL	FILL	FILL	ESTUARINE	FILL	ESTUARINE	FILL	ESTUARINE	FILL	FILL	FILL	FILL	FILL
PAEC Sampled					Carbon Plant															
Sample collected by					KJG															
Metals																				
Aluminium	50	NL⁺	-	-	9550	10300	14200	14700	13800	7740	3180	6740	1310	32700	8210	-	-	-	-	-
Arsenic	1	3000	160	-	10.9	16.5	3.4	6.3	5.1	0.9	1.2	0.8	0.2	12	1.8	-	-	-	-	-
Cadmium	0.1	900	-	-	<0.1	<0.1	0.1	0.1	2.4	<0.1	<0.1	<0.1	<0.1	0.4	<0.1	-	-	-	-	-
Chromium	1	3600	320**	-	7.3	7.9	52.1	25.5	18	5	3.2	5.3	1.4	26.9	6	-	-	-	-	-
Copper	2	240000	210**	-	13.6	14.2	16	15.6	44.5	7.8	0.2	4.2	0.3	21.9	0.3	-	-	-	-	-
Nickel	1	6000	140**	-	11	12.4	34.4	53	27.8	6.4	1.8	2	0.6	51.6	4.6	-	-	-	-	-
Lead	2	1500	1800	-	6.3	6.5	25.8	9.2	44.4	3.6	1.8	37	0.6	20.6	3.3	-	-	-	-	-
Zinc	5	400000	440**	-	51.6	53.4	178	70.4	115	18.8	0.6	43.4	0.5	288	1.4	-	-	-	-	-
Mercury	0.05	730	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-
Fluoride (soluble)	40	17000*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride (total)	40	-	-	-	240	150	1960	2350	3950	700	60	200	80	7740	650	-	-	-	-	-
Non Metallic Inorganics																				
Total Cyanide	1		-	-	<1	<1	<1	<1	<1	3	<1	<1	<1	<1	<1	-	-	-	-	-
Polycyclic Aromatic Hydrocar	bons (PAH)																			
Naphthalene	0.5	-	370	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	4	0.2
Acenaphthylene	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	1.9	<0.5	0.1	0.1	<0.1	7.3	0.4
Fluorene	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.1	<0.1	<0.1	2.7	0.2
Phenanthrene	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	<0.5	16.6	<0.5	1.3	0.7	<0.1	3.4	0.2
Anthracene	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.4	<0.5	0.3	0.3	<0.1	0.9	<0.1
Fluoranthene	0.5	-	-	-	<0.5	<0.5	<0.5	0.7	3.8	<0.5	<0.5	<0.5	<0.5	41.2	<0.5	6	2.2	<0.1	5.9	0.1
Pyrene	0.5	-	-	-	<0.5	<0.5	<0.5	0.7	3	<0.5	<0.5	<0.5	<0.5	38.3	<0.5	6	2	<0.1	4.6	0.1
Benz(a)anthracene	0.5	-	-	-	<0.5	<0.5	<0.5	0.7	5.3	<0.5	<0.5	<0.5	<0.5	47.1	<0.5	3.4	0.8	<0.1	0.8	<0.1
Chrysene	0.5	-	-	-	<0.5	<0.5	<0.5	0.8	8.1	<0.5	<0.5	<0.5	<0.5	50.3	<0.5	3.8	0.8	0.1	0.9	<0.1
Benzo(b)&(k)fluoranthene	1	-	-	-	<0.5	<0.5	<0.5	1.1	9.6	<0.5	<0.5	<0.5	<0.5	67.2	<0.5	10	1.5	<0.2	1.3	<0.2
Benzo(k)fluoranthene	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	<0.5	<0.5	20.4	<0.5	-	-	-	-	-
Benzo(a) pyrene	0.5	-	-	72 ^C	<0.5	<0.5	<0.5	0.6	2.1	<0.5	<0.5	<0.5	<0.5	33.6	<0.5	4.9	0.88	< 0.05	0.44	< 0.05
Indeno(1,2,3-c,d)pyrene	0.5	-	-	-	<0.5	<0.5	<0.5	0.6	1.5	<0.5	<0.5	<0.5	<0.5	29.2	<0.5	4.7	0.6	<0.1	0.4	<0.1
Dibenz(a,h)anthracene	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	7.7	<0.5	0.5	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	0.5	-	-	-	<0.5	<0.5	<0.5	0.6	1.8	<0.5	<0.5	<0.5	<0.5	28.8	<0.5	4.1	0.6	<0.1	0.3	<0.1
Benzo(a) pyrene TEQ		40	-	-	<0.5	<0.5	<0.5	1.87	4.5	<0.5	<0.5	<0.5	<0.5	58.5	<0.5	7	1	<0.5	1	<0.5
Sum of reported PAH		4000	-	-	<0.5	<0.5	<0.5	5.8	38.6	0.8	<0.5	<0.5	<0.5	387	<0.5	46	10	0.1	33	1.2

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^C Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects) Cells with '' indicates testing was not completed or an appropriate screening criteria was not available

NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is at a concentration greater than physically possible in soil, and therefore the criteria is defined as 'Non-Limiting' or NL.

^{*} Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)'

^{**} EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

TABLE LR3 Soil Analytical Results for AEC 8 Carbon Plant

TABLE LR3 Soll Analytical	Nesults it	ALC U CE	ii boii i iaiii															
Sample Identification	<u> </u>				MW106	MW107	HA106	HA106	HA107	HA107	HA108	HA109	HA109	HA110	HA110	HA111	HA111	HA112
Sample Depth (m)	PQL	HIL D ^A	EIL C/IB	ESL C/I	0.0-0.1	0.15-0.25	0.1	0.15	0.1	0.2	0-0.1	0-0.1	0.3-0.4	0-0.1	0.3-0.4	0-0.1	0.3-0.4	0.1
Date		THED	LIL O/I	202 0/1	30-Jun-14	30-Jun-14	25-Jun-14											
Sample Profile					FILL													
PAEC Sampled					Carbon Plant													
Sample collected by					KJG													
Metals																		
Aluminium	50	NL*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	1	3000	160	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium	0.1	900	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium	1	3600	320**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	2	240000	210**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	1	6000	140**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	2	1500	1800	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	5	400000	440**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	0.05	730	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
Fluoride (soluble)	40	17000*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride (total)	40	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
Non Metallic Inorganics																		
Total Cyanide	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Polycyclic Aromatic Hydrocar	bons (PAH)																	
Naphthalene	0.5	-	370	-	<0.1	<0.1	<0.1	<0.1	1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.5	-	-	-	<0.1	<0.1	<0.1	<0.1	0.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.5	-	-	-	<0.1	<0.1	0.6	0.7	4.3	8.3	0.4	0.4	0.2	1.5	0.1	1.2	1.1	0.2
Fluorene	0.5				<0.1	<0.1	0.3	0.3	2.6	3.6	0.2	0.2	<0.1	1	<0.1	0.8	0.4	0.1
Phenanthrene	0.5	-	-	-	0.1	<0.1	5.5	6.3	24	68	3.5	3.4	1.5	15	1.8	12	12	2.4
Anthracene	0.5	-	-	-	<0.1	<0.1	1.2	1.3	5.7	11	0.8	0.9	0.4	3.8	0.5	3.1	3.7	0.6
Fluoranthene	0.5	-		-	0.6	<0.1	19	20	76	220	12	11	4.5	43	7.8	37	46	9.3
Pyrene	0.5		-	-	0.6	<0.1	19	19	72	220	12	10	4.5	40	7.8	35	46	9
Benz(a)anthracene	0.5	-	-	-	0.7	<0.1	18	14	70	150	9	10	2.6	40	5.5	36	34	9.3
Chrysene	0.5	-	-	-	0.9	<0.1	19	13	70	130	9.3	10	2.5	41	5.5	37	34	9.8
Benzo(b)&(k)fluoranthene	1	-	-	-	2.4	<0.2	46	30	170	290	22	25	5.6	96	13	86	76	25
Benzo(k)fluoranthene	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Benzo(a) pyrene	0.5	-	-	72 ^C	0.72	< 0.05	25	18	98	180	13	14	3.7	55	8.1	50	47	14
Indeno(1,2,3-c,d)pyrene	0.5	-	-	-	0.7	<0.1	19	15	63	150	9.1	10	2.4	41	5.8	38	36	10
Dibenz(a,h)anthracene	0.5	-	-	-	0.1	<0.1	2.7	2	15	16	0.9	1.7	0.3	9.4	0.7	8.4	4.4	1.4
Benzo(g,h,i)perylene	0.5	-	-	-	0.7	<0.1	18	14	59	130	8.9	9.7	2.3	37	5.5	33	32	9.2
Benzo(a) pyrene TEQ		40	-	-	1	<0.5	36	26	140	260	18	21	5	82	11	75	67	20
Sum of reported PAH		4000	-	-	7.6	NIL (+)VE	190	150	730	1600	100	110	30	420	63	380	370	100

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^c Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinoge Cells with '·' indicates testing was not completed or an appropriate screening criteria was not available

NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is at a conc

^{*} Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Asse

^{**} EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collec

TABLE LR4 Soil Analytical Results for AEC 11 Washdown Bay

Sample Identification		Guide	eline	SB9	SB9	MW11	SB101	SB101
Sample Depth (m)	PQL	LIII DA	EU O//B	0.3-0.4	0.6-0.8	0-0.2	0.0-0.1	0.3-0.4
Date		HIL D ^A	EIL C/IB	16-Apr-12	16-Apr-12	16-Apr-12	30-Jun-14	30-Jun-14

Sample Profile				FILL	FILL	FILL	FILL	FILL
PAEC Sampled				Washbay	Washbay	Washbay	Washbay	Washbay
Sample collected by				KJG	KJG	KJG	KJG	KJG
				-				
Metals								
Aluminium	50	NL*	-	39800	12600	15000	-	-
Arsenic	1	3000	160	17.1	23.9	5.8	-	-
Cadmium	0.1	900	-	11.1	0.2	0.2	-	-
Chromium	1	3600	320**	59.5	18.8	23.7	-	-
Copper	2	240000	210**	82	62	36.3	-	-
Nickel	1	6000	140**	152	29.4	24.5	-	-
Lead	2	1500	1800	185	66.4	48	-	-
Zinc	5	400000	440**	578	621	420	-	-
Mercury	0.05	730	-	0.2	<0.1	<0.1	-	-
Fluoride (soluble)	40	17000*	-	-	-	-	94	73
Fluoride (total)	40	-	-	39000	1230	960	-	-
Non Metallic Inorganics								
Total Cyanide	1	1500	-	-	-	<1	-	-

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is at a concentration greater than physically possible in soil, and therefore the criteria is defined as 'Non-Limiting' or NL.

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

- <LOR or <value = Less than the laboratory Limit of Reporting</p>
- * Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)'
- ** EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

TABLE LR5 Soil Analytical Results for AEC 12 Pot Lines and PAEC 25 Dry Scrubbers

Part	Sample Identification				SB1	SB2	SB3	SB4	SB115	SB116	SB116	SB117	SB117	SB118	SB118	SB119	SB119	SB120	SB121
12/04/2012 12/04/2012 12/04/2012 12/04/2012 01-Jul-14 01-Jul-14 01-Jul-14 02-Jul-14 02-Jul-14 02-Jul-14 02-Jul-14 02-Jul-14 01-Jul-14	Sample Depth (m)	PQL	LIII. DA	EII O#B	0-0.05	0-0.05	0-0.05	0-0.05	0.0-0.1	0.0-0.1	0.1-0.2	0.0-0.1	0.1-0.2	0.0-0.1	0.2-0.3	0.0-0.1	0.3-0.4	0.0-0.1	0.0-0.1
Pol Lines Pol Line Pol Lines Pol Lin	Date		HIL D	EIL C/I	12/04/2012	12/04/2012	12/04/2012	12/04/2012	01-Jul-14	01-Jul-14	01-Jul-14	02-Jul-14	02-Jul-14	02-Jul-14	02-Jul-14	01-Jul-14	01-Jul-14	01-Jul-14	01-Jul-14
Pol Lines Pol Line Pol Lines Pol Lin	•			•															
FR FR FR FR KG KG KG KG KG KG KG K	Sample Profile				FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL
Metals Source S	PAEC Sampled				Pot Lines	Pot Lines	Pot Lines	Pot Lines	Pot Lines	Pot Lines	Pot Lines	Pot Lines	Pot Lines	Pot Lines	Pot Lines	Dry Scrubbers	Dry Scrubbers	Dry Scrubbers	Dry Scrubbers
Aluminium 50 NL* - 53300 13900 138000 44700	Sample collected by				FR	FR	FR	FR	KG	KG	KG	KG							
Aluminium 50 NL* - 53300 13900 138000 41700																			
Arsenic 1 3000 160 4.5 28.9 8.8 14.6	Metals																		
Cadmium 0.1 900 - 0.7 1.8 1.4 0.8 -	Aluminium	50	NL*	-	53300	139000	138000	41700	-	-	ı	-	-	-	-	-	-	-	-
Chromium 1 3600 320** 26.8 35 14.8 36	Arsenic	1	3000	160	4.5	28.9	8.8	14.6	-	-	ı	-	-	-	-	-	-	-	-
Copper 2 240000 210** 21.1 280 18.9 89.8 - </td <td>Cadmium</td> <td>0.1</td> <td>900</td> <td>-</td> <td>0.7</td> <td>1.8</td> <td>1.4</td> <td>0.8</td> <td>-</td> <td>-</td> <td>ı</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Cadmium	0.1	900	-	0.7	1.8	1.4	0.8	-	-	ı	-	-	-	-	-	-	-	-
Nickel 1 6000 140** 98 159 166 65.7	Chromium	1	3600	320**	26.8	35	14.8	36	-	-	ı	-	-	-	-	-	-	-	-
Lead 2 1500 1800 25 430 28.7 247	Copper	2	240000	210**	21.1	280	18.9	89.8	-	-	ı	-	-	-	-	-	-	-	-
Zinc 5 40000 440** 229 5400 444 1210 -	Nickel	1	6000	140**	98	159	166	65.7	-	-	ı	-	-	-	-	-	-	-	-
Mercury (inorganic) 0.05 730 - <0.1 <0.1 <0.1 <0.1 <0.1	Lead	2	1500	1800	25	430	28.7	247	-	-	ı	-	-	-	-	-	-	-	-
Fluoride (soluble) 40 17000* 73 140 48 13 24 17 29 55 36 3.1 20	Zinc	5	400000	440**	229	5400	444	1210	-	-	-	-	-	-	-	-	-	-	-
	Mercury (inorganic)	0.05	730	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-
Tuoride (total) 40 13400 26400 41900 20900	Fluoride (soluble)	40	17000*	-	-	-	-	-	73	140	48	13	24	17	29	55	36	3.1	20
	Fluoride (total)	40	-	-	13400	26400	41900	20900	-	-	-	-	-	-	-	-	-	-	-

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is at a concentration greater than physically possible in soil, and therefore the criteria is defined as 'Non-Limiting' or NL.

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^{*} Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)'

^{**} EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

TABLE LR5 Soil Analytical Results for AEC 12 Pot Line

Sample Identification				SB121	SB122	SB123	SB123	SB124	SB125	SB126	SB127	SB127	SB127	SB128	SB129	SB129	SB129	SB131
Sample Depth (m)	PQL	LIII DA	EIL C/I ^B	0.1-0.2	0.0-0.1	0.0-0.1	0.1-0.2	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.1-0.2	0.4-0.6	0.0-0.1	0.0-0.1	0.1-0.2	0.9-1.0	0.0-0.1
Date		HIL D ^A	EIL C/I	01-Jul-14	02-Jul-14	02-Jul-14	02-Jul-14	02-Jul-14	02-Jul-14									
•			-	-														
Sample Profile				FIILL	ALLUVIAL	FILL	FILL	FILL	FILL	FILL								
PAEC Sampled				Dry Scrubbers														
Sample collected by				KG														
		•				•				•				•			•	
Metals																		
Aluminium	50	NL*	-	-	-	-	-	-	•	-	-	-	-		-		-	-
Arsenic	1	3000	160	-	-	-	-	-	ı	-	-	-	1	ı	-	ı	-	-
Cadmium	0.1	900	-	-	-	-	-	-	ı	-	-	-	1	ı	-	ı	-	-
Chromium	1	3600	320**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	2	240000	210**	-	-	-	-	-	•	-	-	-	-		-		-	-
Nickel	1	6000	140**	-	-	-	-	-	ı	-	-	-	ı	ı	-	ı	-	-
Lead	2	1500	1800	-	-	-	-	-	ı	-	-	-	ı	ı	-	ı	-	-
Zinc	5	400000	440**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury (inorganic)	0.05	730	-	-	-	-	-	-	•	-	-	-	-		-		-	-
Fluoride (soluble)	40	17000*	-	7.8	44	87	140	87	210	250	7.5	14	0.6	23	23	16	2.7	10
Fluoride (total)	40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Cells with '-' indicates testing was not completed or an appropriate screening crite

NL: indicates that the site-specific risk-based aluminium screening criteria for ind

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

 $^{^\}star$ Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening L

 $^{^{\}star\star}$ EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and T $^{\prime\star}$

TABLE LR5 Soil Analytical Results for AEC 12 Pot Line

Sample Identification				SB131	SB132	SB133	SB133	SB134	SB135	SB135	HA101	HA101	HA101	HA102	HA102	HA102	HA103	HA103	HA104
Sample Depth (m)	PQL	LIII. DA	EU O#B	0.3-0.4	0.0-0.1	0.2-0.3	0.3-0.4	0-0.1	0-0.1	0.3-0.4	Surface	0.1	0.2	Surface	0.1	0.15	Surface	0.1	Surface
Date		HIL D ^A	EIL C/I ^B	02-Jul-14	26/06/2014	26/06/2014	26/06/2014	26/06/2014	26/06/2014	26/06/2014	26/06/2014	26/06/2014	26/06/2014						
•			-	-															
Sample Profile				ALLUVIAL	FILL	ALLUVIAL	ALLUVIAL	FILL	FILL	FILL									
PAEC Sampled				Dry Scrubbers	Pot Lines														
Sample collected by				KG	KW														
			•		•														
Metals																			
Aluminium	50	NL*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	1	3000	160	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium	0.1	900	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium	1	3600	320**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	2	240000	210**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	1	6000	140**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	2	1500	1800	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	5	400000	440**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury (inorganic)	0.05	730	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride (soluble)	40	17000*	-	52	2.3	5	27	2.3	22	36	28	180	62	53	78	120	140	180	90
Fluoride (total)	40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AU 1/ 1 1/ 1																			

Cells with '-' indicates testing was not completed or an appropriate screening crite

NL: indicates that the site-specific risk-based aluminium screening criteria for ind

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

 $^{^\}star$ Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening L

 $^{^{\}star\star}$ EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and T $^{\prime\star}$

TABLE LR5 Soil Analytical Results for AEC 12 Pot Line

Sample Identification				HA104	HA105	HA105	HA105
Sample Depth (m)	PQL	LIII DA	EIL C/IB	0.1	Surface	0.1	0.2
Date		HIL D ^A	EIL C/I	26/06/2014	26/06/2014	26/06/2014	26/06/2014

Sample Profile				
PAEC Sampled	Pot Lines	Pot Lines	Pot Lines	Pot Lines
Sample collected by	KW	KW	KW	KW

Metals							
Aluminium	50	NL*	-	-	-	-	-
Arsenic	1	3000	160	-	-	-	-
Cadmium	0.1	900	-	-	-	-	-
Chromium	1	3600	320**	-	-	-	-
Copper	2	240000	210**	-	-	-	-
Nickel	1	6000	140**	-	-	-	-
Lead	2	1500	1800	-	-	-	-
Zinc	5	400000	440**	-	-	-	-
Mercury (inorganic)	0.05	730	-	-	-	-	-
Fluoride (soluble)	40	17000*	-	82	100	120	67
Fluoride (total)	40	-	-	-	-	-	-

All results are in units of mg/kg.

Cells with '-' indicates testing was not completed or an appropriate screening crite

NL: indicates that the site-specific risk-based aluminium screening criteria for ind

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

 $^{^\}star$ Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening L

^{**} EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TI

TABLE LR6 Soil Analytical Results for PAEC 26 Ring furnace Scrubber

TABLE LING SOIL ATTAINTING	ui itesuits	01 1 ALG 20 1	King rumace	OCIUDDEI																
Sample Identification	_				HA113	HA113	HA114	HA115	HA115	HA116	HA116	HA117	HA117	HA119	HA119	HA120	HA121	HA122	HA122	SB106
Sample Depth (m)	PQL	HIL D ^A	EIL C/IB	ESL C/I	0-0.1	0.3-0.4	0-0.1	0-0.1	0.2-0.3	0-0.1	0.3-0.4	0-0.1	0.25-0.35	0-0.1	0.3-0.4	0-0.1	0-0.1	0-0.1	0.3-0.4	0.0-0.1
Date		HIL D	EIL C/I	ESL C/I	27-Jun-14	30-Jun-14														
Sample Profile					FIILL															
PAEC Sampled					27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	30/06/2014
Sample collected by					KW	KG														
Metals																				
Fluoride (soluble)	40	17000*		-	40	130	29	7.9	-	28	-	13	-	76	130	13	17	39	68	38
Polycyclic Aromatic Hydroca	arbons (PAI	1)																		
Naphthalene	0.1	-	370	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.9	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.1	-	-	-	2.7	0.9	0.4	16	2.2	4.2	0.2	4	<0.1	5.6	1.5	1.4	0.1	0.4	0.7	<0.1
Anthracene	0.1	-	-	-	0.7	0.3	<0.1	3.5	0.6	8.0	<0.1	1.3	<0.1	1	0.4	0.4	<0.1	<0.1	0.2	<0.1
Fluoranthene	0.1	-	-	-	15	3.2	3.1	210	40	41	3.4	38	0.3	17	5.8	12	1.2	2.4	2.6	0.2
Pyrene	0.1	-	-	-	14	3.1	3	240	50	41	3.4	38	0.3	16	5.6	11	1.2	2.3	2.5	0.3
Benz(a)anthracene	0.1	-	-	-	9.5	1.5	4.4	300	61	57	3.1	52	0.2	16	3.2	14	1.5	2.4	1.4	0.3
Chrysene	0.1	-	-	-	12	1.6	8.1	490	110	110	5.8	110	0.3	21	3.3	26	2.8	4.2	1.7	0.3
Benzo(b)&(k)fluoranthene	0.2	-	-	-	28	3.6	18	990	230	240	12	300	8.0	53	7.4	69	7.4	8.8	3.8	0.7
Benzo(a) pyrene	0.05	-	-	72 ^C	8.6	1.9	3.7	230	44	42	1.7	47	0.26	19	4.3	12	1.4	2.2	1.7	0.3
Indeno(1,2,3-c,d)pyrene	0.1	-	-	-	7.4	1.3	3.1	190	44	48	2.9	76	0.3	17	3.1	20	2.2	2.1	1.2	0.3
Dibenz(a,h)anthracene	0.1	-	-	-	1.4	0.2	0.8	60	15	12	0.7	25	<0.1	3	0.3	4.9	0.5	0.4	0.2	<0.1
Benzo(g,h,i)perylene	0.1	-	-	-	7.5	1.2	3.3	190	42	53	2.9	81	0.3	16	2.9	21	2.4	2.1	1.3	0.3
Benzo(a) pyrene TEQ	0.5	40	-	-	15	3	7	440	94	90	4	120	<0.5	31	6	28	3	4	3	<0.5
Sum of reported PAH		4000	-	-	110	19	47	2900	640	640	37	770	2.8	190	38	190	21	27	17	2.7

All results are in units of mg/kg.

NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is at a concentration greater than physically possible in soil, and therefore the criteria is defined as 'Non-Limiting' or NL.

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^C Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects) Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

^{*} Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)'

^{**} EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

TABLE LR7 Soil Analytical Results for PAEC 28 Playing Fields

Sample Identification

Sample Depth (m)	PQL	HIL D ^A	HSL D ^B	EIL C/IC	Management	ESL C/I ^E	0.2	0-0.2	0.5	0-0.3	0.4-0.5	0.4-0.5	0.1-0.3
Date		HIL D	HSL D	EIL C/I	Limits ^D	ESL C/I	23-Jun-14						
Sample Profile							Estuarine	Estuarine	Estuarine	Fiill	Estuarine	Estuarine	Fill
PAEC Sampled							Playing Fields						
Sample collected by							KW						
Metals													
Arsenic	4	3000		160			<4	<4	<4	<4	<4	<4	63
Cadmium	0.4	900		-			<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.5
Chromium	1	3600		320**			3	12	<1	23	17	11	12
Copper	1	240,000		210**			2	2	<1	2	<1	<1	<u>590</u>
Lead	1	1500		1800			5	10	1	12	24	4	1600
Mercury	0.1	730		-			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	1	6000		140**			8	5	1	6	3	1	5
Zinc	1	400,000		440**			32	36	3	35	5	2	<u>5600</u>
Fluoride (soluble)	0.5	17000*		-			45	16	19	22	<0.5	2.1	31
Polycyclic Aromatic Hydroca	arbons (PAH	l)											
Naphthalene	0.1			370			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	0.1						0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	0.1						0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1
Benz(a)anthracene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)&(k)fluoranthene	0.2						<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a) pyrene	0.05					72 ^F	0.07	0.12	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-c,d)pyrene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

TP101

< 0.5

0.35

<25

<50

<100

<100

<25

<50

<0.2

< 0.5

<2

<1

< 0.5

0.69

<25

<50

<100

<100

<25

<50

<0.2

<0.5

<2

<1

<0.5

NIL (+)VE

<25

<50

<100

<100

<25

<50

<0.2

<0.5

<2

<1

< 0.5

NIL (+)VE

<25

<50

<100

<100

<25

<50

<0.2

<0.5

<2

<1

<0.5

NIL (+)VE

<25

<50

<100

<100

<25

<50

<0.2

<0.5

<2

<1

<0.5

NIL (+)VE

<25

<50

<100

<100

<25

<50

<0.2

< 0.5

<2

<1

<0.5

NIL (+)VE

<25

<50

<100

<100

<25

<50

<0.2

< 0.5

<2

<1

TP104

TP107

TP111

TP113

TP115

TP116

All results are in units of mg/kg.

Benzo(a) pyrene TEQ

Sum of reported PAH

TRH C6-C10

TRH >C10-C16

TRH >C16-C34

TRH >C34-C40

Benzene

Toluene

Xvlenes

Ethylbenzene

TRH C6-C10 - BTEX (F1)

TRH >C10-C36 - Naph (F2)

Total Petroleum Hydrocarbons (TPH)

Benzene, Toluene, Ethyl benene, Xylene (BTEX)

0.5

25

50

100

100

25

50

0.2

0.5

40

4000

800

1000

5000

10000

170

2500

6600

215

75

135

165

180

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

260

NL

3

NL

NL

230

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Soil Health Screening Level for Vapour Intrusion 'D' Commercial/ Industrial

^C NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

D NEPM (2013) Management Limits for TPH Fractions F1 to F4 in soil

^E NEPM (2013) Ecological Screening Level for Commercial/ Industrial

F Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects)

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

^{*} Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)'

^{**} EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

NL: If the derived soil HSL exceeds the soil saturation concentration the HSL is shown as 'not limiting' or 'NL'.

TABLE LR8 Soil Analytical Results for PAEC 29 Area East of Playing Fields

Cample Identification	i itesuits it	01 1 ALO 23 A	ilea Last Oi i	laying i lei	us		TP117	TD440	TD110	TD120	TP122	TD400	TP124	TP125	TP126	TP127
Sample Identification	PQL				Managament			TP118	TP119	TP120	0.5	TP123 0.5	0.5	0.5	0.5	
Sample Depth (m)	PQL	HIL D ^A	HSL D ^B	EIL C/I ^C	Management Limits ^D	ESL C/I ^E	0.5	0.5	0.5	0.5						0.5
Date					Limits		25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14
Sample Profile							FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL
PAEC Sampled							EPF	EPF	EPF	EPF	EPF	EPF	EPF	EPF	EPF	EPF
Sample collected by							KW	KW	KW	KW	KW	KW	KW	KW	KW	KW
Sample collected by							KW	KW	KVV	KW	KVV	KW	KW	KW	NW	KVV
Metals																
Arsenic	4	3000		160			<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Cadmium	0.4	900		-			<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	1	3600		320**			11	5	3	3	5	7	7	7	5	6
Copper	1	240,000		210**			17	4	3	2	1	2	3	2	5	3
Lead	1	1500		1800			23	7	8	18	6	9	7	8	6	6
Mercury	0.1	730		-			0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	1	6000		140**			18	6	4	4	3	7	5	6	4	4
Zinc	1	400,000		440**	İ		51	41	20	22	14	26	12	57	23	13
Fluoride (soluble)	40	17000*					340	22	28	17	26	23	17	27	15	19
Polycyclic Aromatic Hydrocar	bons (PAH))														
Naphthalene	0.1			370			1.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.1						7.6	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	0.1						2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.1						130	0.2	0.1	<0.1	0.1	0.2	<0.1	0.1	0.1	0.2
Anthracene	0.1						33	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	0.1						390	0.5	0.5	0.2	0.5	0.7	0.1	0.4	0.4	0.6
Pyrene	0.1						380	0.4	0.5	0.2	0.5	0.7	<0.1	0.4	0.4	0.5
Benz(a)anthracene	0.1						180	0.2	0.4	0.1	0.3	0.4	<0.1	0.3	0.2	0.2
Chrysene	0.1						170	0.2	0.4	0.1	0.4	0.4	<0.1	0.3	0.2	0.2
Benzo(b)&(k)fluoranthene	0.2						320	0.4	1.2	0.2	0.8	1	<0.2	0.8	0.4	0.3
Benzo(a) pyrene	0.05					72 ^F	<u>220</u>	0.23	0.58	0.13	0.47	0.56	0.06	0.41	0.21	0.17
Indeno(1,2,3-c,d)pyrene	0.1						120	0.2	0.5	0.1	0.4	0.5	<0.1	0.4	0.2	0.1
Dibenz(a,h)anthracene	0.1						26	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	0.1						120	0.2	0.4	0.1	0.4	0.4	<0.1	0.3	0.1	0.1
Benzo(a) pyrene TEQ	0.5	40					310	<0.5	1	<0.5	1	1	<0.5	1	<0.5	<0.5
Sum of reported PAH		4000					2100	2.5	4.8	1	4	4.8	0.18	3.5	2.3	2.2
Total Petroleum Hydrocarbon																
TRH C6-C10	25				800		<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
TRH >C10-C16	50				1000	170	<50	<50	<50	<50	<50	61	<50	<50	<50	<50
TRH >C16-C34	100				5000	2500	5100	<100	<100	<100	<100	150	<100	<100	<100	<100
TRH >C34-C40	100				10000	6600	1000	<100	<100	<100	<100	<100	<100	<100	<100	<100
TRH C6-C10 - BTEX (F1)	25		260			215	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
TRH >C10-C36 - Naph (F2)	50		NL				<50	<50	<50	<50	<50	61	<50	<50	<50	<50
Benzene, Toluene, Ethyl bene		(BTEX)														
Benzene	0.2		3		1	75	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	0.5		NL		1	135	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	2		NL		1	165	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Xylenes	1		230			180	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Soil Health Screening Level for Vapour Intrusion 'D' Commercial/ Industrial

^C NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

D NEPM (2013) Management Limits for TPH Fractions F1 to F4 in soil

^E NEPM (2013) Ecological Screening Level for Commercial/ Industrial

F Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects)

Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

NL: If the derived soil HSL exceeds the soil saturation concentration the HSL is shown as 'not limiting' or 'NL'.

^{*} Site-specific fluoride (soluble) soil crite

^{**} EIL values calculated using site-specific CEC (7.26 meg/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

TABLE LR9 Soil Analytical Results for PAEC 31 Storage Area west of Pot Line 3

Sample Identification	1						TP128	TP128	TP129	TP130	TP130	TP131	TP132	TP132	TP133	TP134	TP135	TP135	TP136	TP137	TP137
	PQL		1	1	Managamant	1															
Sample Depth (m)	FUL	HIL D ^A	HSL D ^B	EIL C/IC	Management Limits ^D	ESL C/I ^E	0.1 25-Jun-14	0.2 25-Jun-14	0-0.3 25-Jun-14	0-0.3 25-Jun-14	0.6-0.7 25-Jun-14	0.1-0.3	0.1 25-Jun-14	0.4 25-Jun-14	0.1-0.2 25-Jun-14	0.2 25-Jun-14	0.1 25-Jun-14	0.4 25-Jun-14	0.1 25-Jun-14	0.1 25-Jun-14	0.4
Date					Limits		25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14
Sample Profile							FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL
PAEC Sampled							SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3
Sample collected by							KW	KW	KW	KW	KW	KW	KW	KW	KW	KW	KW	KW	KW	KW	KW
Campic collected by														1.00						1	
Metals																					
Arsenic	4	3000		160			30	6	6	<4	<4	7	20	<4	8	7	9	6	6	<4	5
Cadmium	0.4	900		-			<0.4	<0.4	<0.4	< 0.4	<0.4	4.3	<0.4	< 0.4	<0.4	0.4	0.6	< 0.4	<0.4	<0.4	<0.4
Chromium	1	3600		320**			17	8	15	9	29	29	33	15	11	10	19	13	6	20	18
Copper	1	240,000		210**			94	12	8	12	1	48	44	2	22	28	140	12	10	24	<1
Lead	1	1500		1800			120	8	9	11	8	23	13	10	21	47	38	16	7	29	17
Mercury	0.1	730		-			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	1	6000		140**			18	14	47	54	8	130	27	3	16	21	17	6	10	12	4
Zinc	1	400,000		440**			510	48	47	86	15	240	130	8	140	220	210	47	42	76	22
Fluoride (soluble)	40	17000*		-			220	800	200	1463	120	87	58	0.9	1.1	110	110	4.6	13	2.2	7
Polycyclic Aromatic Hydroca	bons (PAH)																				
Naphthalene	0.1			370			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.1						<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.1						<0.1	<0.1	0.4	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	0.1						<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	0.1						<0.1	<0.1	1	1	<0.1	0.2	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	0.1						<0.1	<0.1	0.9	1	<0.1	0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benz(a)anthracene	0.1						<0.1	<0.1	0.5	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	0.1						<0.1	<0.1	0.5	0.6	<0.1	0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)&(k)fluoranthene	0.2						<0.2	<0.2	1.1	1	<0.2	0.2	<0.2	<0.2	0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a) pyrene	0.05					72 ^F	0.08	< 0.05	0.64	0.56	< 0.05	0.11	0.06	< 0.05	0.11	< 0.05	0.05	< 0.05	< 0.05	0.08	< 0.05
Indeno(1,2,3-c,d)pyrene	0.1						<0.1	<0.1	0.5	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	0.1						<0.1	<0.1	0.5	0.4	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a) pyrene TEQ	0.5	40					<0.5	<0.5	1	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of reported PAH		4000					0.08	NIL (+)VE	6.2	5.7	NIL (+)VE	0.76	0.06	0.13	0.84	NIL (+)VE	0.05	NIL (+)VE	NIL (+)VE	0.18	NIL (+)VE
Total Petroleum Hydrocarbor																					
TRH C6-C10	25				800		<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
TRH >C10-C16	50				1000	170	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
TRH >C16-C34	100				5000	2500	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	590	<100
TRH >C34-C40	100				10000	6600	<100	<100	<100	<100	<100	<100	<100	<100	120	<100	<100	<100	<100	<100	<100
TRH C6-C10 - BTEX (F1)	25		260			215	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
TRH >C10-C36 - Naph (F2)	50		NL	L			<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
benzene, Toluene, Ethyl benz		(BTEX)		•	1																
Benzene	0.2		3			75	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	0.5		NL			135	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	2		NL			165	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Xylenes	1		230			180	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Soil Health Screening Level for Vapour Intrusion 'D' Commercial/ Industrial

^c NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

D NEPM (2013) Management Limits for TPH Fractions F1 to F4 in soil

^E NEPM (2013) Ecological Screening Level for Commercial/ Industrial

F Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects)

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

<LOR or <value = Less than the laboratory Limit of Reporting

^{*} Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)'

^{**} EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

NL: If the derived soil HSL exceeds the soil saturation concentration the HSL is shown as 'not limiting' or 'NL'.

TABLE LR9 Soil Analytical Results for PAEC 31 Storage Area west of Pot Line 3

TABLE LR9 Soil Analytical Sample Identification	- recountere	1	torago / a oa				TP138	TP139	TP140
Sample Depth (m)	PQL				Management	-	0.2	0.1	0.1
Date Date	1	HIL D ^A	HSL D ^B	EIL C/I ^C	Limits ^D	ESL C/I ^E	25-Jun-14	25-Jun-14	25-Jun-14
Dato									
Sample Profile							FILL	FILL	FILL
PAEC Sampled							SAPL3	SAPL3	SAPL3
Sample collected by							KW	KW	KW
,								ı	
Metals									
Arsenic	4	3000		160			<4	4	<4
Cadmium	0.4	900		-			<0.4	<0.4	<0.4
Chromium	1	3600		320**			7	17	7
Copper	1	240,000		210**			<1	26	1
Lead	1	1500		1800			8	33	13
Mercury	0.1	730		-			<0.1	<0.1	<0.1
Nickel	1	6000	1	140**			3	15	5
Zinc	1	400,000	1	440**			41	280	7
Fluoride (soluble)	40	17000*		-			5.5	79	50
Polycyclic Aromatic Hydrocai	rbons (PAH)								
Naphthalene	0.1			370			<0.1	0.4	<0.1
Acenaphthylene	0.1						<0.1	<0.1	<0.1
Acenaphthene	0.1						<0.1	0.6	<0.1
Fluorene	0.1						<0.1	0.6	<0.1
Phenanthrene	0.1						<0.1	2.3	<0.1
Anthracene	0.1						<0.1	0.3	<0.1
Fluoranthene	0.1						<0.1	3.8	<0.1
Pyrene	0.1						<0.1	3.4	<0.1
Benz(a)anthracene	0.1						<0.1	2.4	<0.1
Chrysene	0.1						<0.1	2.7	<0.1
Benzo(b)&(k)fluoranthene	0.2						<0.2	5.6	<0.2
Benzo(a) pyrene	0.05					72 ^F	< 0.05	2.9	< 0.05
Indeno(1,2,3-c,d)pyrene	0.1						<0.1	2.1	<0.1
Dibenz(a,h)anthracene	0.1						<0.1	0.3	<0.1
Benzo(g,h,i)perylene	0.1						<0.1	1.9	<0.1
Benzo(a) pyrene TEQ	0.5	40					<0.5	4	<0.5
Sum of reported PAH		4000					NIL (+)VE	29	NIL (+)VE
Total Petroleum Hydrocarbon	s (TPH)								
TRH C6-C10	25				800		<25	<25	<25
TRH >C10-C16	50				1000	170	<50	<50	<50
TRH >C16-C34	100				5000	2500	<100	<100	<100
TRH >C34-C40	100				10000	6600	<100	<100	<100
TRH C6-C10 - BTEX (F1)	25		260			215	<25	<25	<25
TRH >C10-C36 - Naph (F2)	50		NL				<50	<50	<50
benzene, Toluene, Ethyl benz	ene, Xylene	(BTEX)							
Benzene	0.2		3			75	<0.2	<0.2	<0.2
Toluene	0.5		NL			135	<0.5	<0.5	<0.5
Ethylbenzene	2		NL			165	<2	<2	<2
Xylenes	1		230			180	<1	<1	<1

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Soil Health Screening Level for Vapour Intrusion 'D' Commercial/ Industrial

^c NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

D NEPM (2013) Management Limits for TPH Fractions F1 to F4 in soil

^E NEPM (2013) Ecological Screening Level for Commercial/ Industrial

F Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocar

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

<LOR or <value = Less than the laboratory Limit of Reporting

^{*} Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRI

^{**} EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2

NL: If the derived soil HSL exceeds the soil saturation concentration the HSL is shown as 'not limiting' or 'NL'.

TABLE LR10 Groundwater Analyt Sample Identification		ito (ug/L)	Guide	eline		MW06	MW06	MW101	MW102	MW07	MW07	MW08	MW08	MW09	MW09	MW10	MW10	MW11	MW11	MW12	MW12	MW13	MW13	MW103	MW104
Date	PQL	95% Fresh A	Recreational		Stock	2/5/12	10/7/14	9/7/14	9/7/14	1/5/12	9/7/14	1/5/12	9/7/14	30/4/12	9/7/14	30/4/12	9/7/14	1/5/12	9/7/14	30/4/12	9/7/14	1/5/12	9/7/14	9/7/14	9/7/14
PAEC Sampled						Background	Background	Refuelling	Refuelling	Refuelling	Refuelling	Refuelling	Refuelling	FLS	FLS	FLS	FLS	Washbay	Washbay	AWP	AWP	AWP	AWP	AWP	AWP
Sample Appearance						Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Cloudy	Clear	Turbid	Clear	Milky	Clear	Brown	Clear	Cloudy	Brown	Clear	Clear
Sample collected by						KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG
Metals								•					,												
Aluminium pH>6.5	10	55	9000	5000	5000	10	180	<10	<10	30	<10	150	1200	10	30	<10	2900	380	390	13,600	<10	2,150	2,500	7,700	1,300
Arsenic	1	24	100	100	500	<10	1	2	1	13	6	3	<1	3	2	2	3	18	1	16	<1	4	<1	1	2
Cadmium	0.1	2*	20	10	10	<1	<0.1	<0.1	<0.1	0.2	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2.1	<0.1	<0.1	<0.1	0.2	<0.1
Chromium	1	27* 12*	500	100	1000	<10	<1	<1	<1	<10	<1	2	1.	<1	<1	<1	3	2	<1	29	<1	4	6	<1	6
Copper	1	97*	20,000	200	500 1000	<10	1	9	2	10 30	<1 2	<1	<1 <1	2 16	1 14	1 19	<1 24	5	<1 6	88 110	<1 15	1 2	<1 <1	<1 18	3 5
Nickel Lead	1	97° 87*	200 100	200 2000	1000	22 <10	20 <1	- 9 - <1	2 <1	30 <1	<1	<1 <1	<1 <1	16 <1	14 <1	19 <1	24	5 <1	- 6 <1	110	15 <1	<1	<1	18 <1	5 <1
Zinc	5	70*	30,000	2000	20,000	78	16	10	4	28	3	12	<1	9	1	10	9	28	2	699	8	25	2	92	8
Mercury	0.1	0.6	10	2	20,000	<0.1	<0.05	<0.05	<0.05	<0.1	<0.05	<0.1	<0.05	<0.1	<0.05	<0.1	<0.05	<0.1	<0.05	<0.1	<0.05	<0.1	<0.05	< 0.05	<0.05
Fluoride	100		1500	1000	2000	1000	220	460	3200	1300	1400	4900	6700	1000	560	1200	2100	3900	8300	1700	220	43000	40000	12000	13000
Non Metallic Inorganics																									
Free Cyanide	4	7	800			<4								8>		<4		<4		<8		7			
Total Cyanide	4	NA				<4								<8		<4		13		<8		40			
Total Petroleum Hydrocarbons (TPH) TPH C6-C9	20				1		1	<10	18	<20	<10	<20	<10			1									
TPH C10-C14	50				+			<50	<50	<20 <50	<10 <50												\vdash		
TPH C10-C14 TPH C15-C28	100		t	!	1	+	+	<100	<100	<100	<100	<50 330	<50 <100			+						—	\vdash	-	
TPH C29-C36	100		1	1	1			<100	<100	<50	<100	<50	<100												
TPH C6-C36		LOR		LOR	LOR			<100	18	<50	<100	330	<100												
Polycyclic Aromatic Hydrocarbons (P																									
Naphthalene	0.1	16				<0.1				<0.1		<0.1		<0.1		<0.1		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.1		1	1		<0.1	1	1		<0.1		<0.1		<0.1		<0.1		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.1					<0.1				<0.1		<0.1		<0.1		<0.1		<0.1		<0.1	<0.1	0.2	<0.1	<0.1	<0.1
Fluorene	0.1					<0.1				<0.1		<0.1		<0.1		<0.1		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.1	2				<0.1				<0.1		<0.1		<0.1		<0.1		<0.1		<0.1	<0.1	0.9	<0.1	<0.1	<0.1
Anthracene	0.1	0.4	1			<0.1				<0.1		<0.1		<0.1		<0.1		<0.1		<0.1	<0.1	0.2	<0.1	<0.1	<0.1
Fluoranthene	0.1	1.4				<0.1				<0.1		<0.1		0.2		<0.1		<0.1		0.3	<0.1	4.8	<0.1	<0.1	0.1
Pyrene	0.1				1	<0.1				<0.1		<0.1		0.2		<0.1		<0.1		0.3	<0.1	5	<0.1	<0.1	0.2
Benz(a)anthracene	0.1					<0.1				<0.1		<0.1		0.3		<0.1	1	<0.1		0.3	<0.1	4	<0.1	<0.1	<0.1
Chrysene	0.1				+	<0.1				<0.1		<0.1		0.6		<0.1		<0.1		0.3	<0.1	3.6	<0.1	<0.1	0.1
Benzo(b)&(k)fluoranthene	0.1				+	<0.1	ļ	-		<0.1		<0.1		1.8		<0.1		<0.1		0.2	<0.1	10.8	<0.1	<0.1	<0.2
	0.05	0.2						-																	
Benzo(a) pyrene	0.05	0.2				< 0.05				<0.05		<0.05		<0.05		<0.05		<0.05		0.4	<0.05	6.46	<0.05	<0.05	0.1
Indeno(1,2,3-c,d)pyrene						<0.1		1		<0.1		<0.1		0.2		<0.1		<0.1		0.2	<0.1	3	<0.1	<0.1	0.1
Dibenz(a,h)anthracene	0.1					<0.1				<0.1		<0.1		0.1		<0.1		<0.1		<0.1	<0.1	1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	0.1					<0.1		1		<0.1		<0.1		0.4		<0.1		<0.1		0.2	<0.1	2.6	<0.1	<0.1	0.1
Semivolatile Organic Compounds (S' Organochlorine Pesticides (OCP)	VOCS																								
alpha-BHC	2		1	T T	1	<2	T	1						<2		<2	1 1		ı				,	$\overline{}$	
HCB	2					<2								<2		<2									
delta-BHC	2					<2								<2		<2									
Heptachlor	2	0.09				<2								<2		<2									
Aldrin	2	0.001				<2								<2		<2						<u> </u>	oxdot		↓
Heptachlor epoxide	2					<2								<2		<2							igspace		
Chlordane Endosulfan	2	0.08				<2 <2		-						<2 <2		<2 <2							\vdash		-
Dieldrin	2	0.01			-	<2								<2		<2							\vdash		
DDE	2	0.03			1	<2								<2		<2						†	\vdash	-	
Endrin	2	0.02				<2								<2		<2									
DDD	2					<2								<2		<2									
Endrin aldehyde	2					<2								<2		<2									
Endosulfan sulfate	2					<2								<2		<2							oxdot		Ь—
DDT Particular (OR	4	0.01				<4								<4		<4									
Organophosphorous Pesticides (OP Dichlorvos	2					<2								<2		<2									
Dimethoate	2	0.15	1	1	1	<2		1	l	l				<2	l	<2			l	l					
Diazinon	2	0.01	1			<2								<2		<2								-	
Chlorpyrifos-methy	2					<2								<2		<2									
Malathion	2	0.05	1			<2						-		<2		<2								-	
Fenthion	2	0.2				<2								<2		<2						lacksquare	╙		——
Chlorpyrifos	2		1	1		<2		1						<2		<2						└	oxdot		
Bromophos-ethy Chlorfenvinphos	2		 	 	1	<2 <2	-	1	l	-	-			<2 <2	-	<2 <2					-		$\vdash \vdash \vdash$		
Prothiofos	2		1	1	+		-	1	-	-					-				-	-		-	$\vdash \vdash \vdash$	\longrightarrow	—
Ethion	2		t	!	1	<2 <2	+							<2 <2		<2 <2						—	\vdash	+	
Phenois																									
Total Phenolics	4	320				<4								<4		<4									
Phthalate Esthers																									
Dimethylphthalate	2	3700		1		<2								<2		<2									
Diethylephthalate	2	1000				<2								<2		<2							تــــــــــــــــــــــــــــــــــــــ		
Nitrosamines	-				1		1	_						_		1 0	_					_			
Total Nitrosamines	2				1	<2		1						<2		<2									
	2					<2								<2		<2									
Nitroaromatics and Ketones					1	- SZ		1						54		- SZ									
Total Nitroaromatics and Ketone	1 2																								
Total Nitroaromatics and Ketone	2					<2								<2		<2									
Total Nitroaromatics and Ketone: Haloethers Total Haloethers						<2				<u> </u>				<2		<2									
Total Nitroaromatics and Ketone Haloethers Total Haloethers Chlorinated Hydrocarbons Total Chlorinated Hydrocarbon:						<2								<2		<2									
Total Nitroaromatics and Ketone Haloethers Total Haloethers Chlorinated Hydrocarbons Total Chlorinated Hydrocarbons Anilines and Benzidines	2																								
Total Nitroaromatics and Ketone Haloethers Total Haloethers Chlorinated Hydrocarbons Total Chlorinated Hydrocarbon: Anilines and Benzidines Total Anilines and Benzidines	2																								
Total Nitroaromatics and Ketone Haloethers Total Haloethers Chlorinated Hydrocarbons Total Chlorinated Hydrocarbon: Anilines and Benzidine: Miscellaneous Compounds	2 2					<2								<2											
Total Nitroaromatics and Ketone Haloethers Total Haloethers Chlorinated Hydrocarbons Total Chlorinated Hydrocarbon: Anilines and Benzidines Total Anilines and Benzidines	2																								

Sample Identification Date	PQL	95% Fresh A	Guideli Recreational		Stock	MW14 1/5/12	MW14 9/7/14	MW15 3/5/12	MW15 11/7/14	MW16 3/5/12	MW16 10/7/14	MW17 3/5/12	MW17 10/7/14	MW18 3/5/12	MW18 10/7/14	MW105 10/7/14	MW106 10/7/14	MW107 11/7/14	S3A 3/5/12	S3A 10/7/14	S3B 3/5/12	S3B 10/7/14	SUMP 3/5/12		MW19 10/7/14		MW20 10/7/14	
AEC Sampled		0070110011				Corbon Bloot	Carbon Plant	Corbon Bloot	Corbon Bloot	Corbon Bloot	Corbon Bloot	Corbon Blont	Corbon Blont	Carbon Plant	Corbon Blont	Carbon Plant	Corbon Blood	Carbon Plant	Carbon Plant	Corbon Bloot	Carbon Plant	Carbon Plant	Corbon Bloot	DSA	DSA	DSA	DSA	PRA
Sample Appearance						Yellow		Yellow	Clear Clear	Clear Clear	Clear	Cloudy	Clear Clear	Clear	Clear	Clear	Clear Clear	Clear Clear	Clear Clear	Clear Clear	Clear Clear	Clear Clear	Clear Clear	Milky		Cloudy	Clear	Clear
Sample collected by						KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG
Metals																												
Aluminium pH>6.5	10	55	9000	5000	5000	110	<10	200	180	100	<10	3,260	3,800	3,120	750	20	50	5,000	50	630	270	1400	40		8	-	1500	20
Arsenic Cadmium	0.1	24 2*	100 20	100	500 10	0.3	2 <0.1	<1 0.2	2 <0.1	4 <0.1	<1 <0.1	12 <0.1	12 <0.1	2 <0.1	<1 <0.1	1 <0.1	2 <0.1	<1 <0.1	5 0.3	0.2	2 <1	0.2	4		<0.1	-	2 <0.1	<1 <0.1
Chromium	1	27*	500	100	1000	v.3 <1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1 4	3	<1	2	<0.1 5	2	v.3 <1	1	1	2	3 <1		<1	- :	2	<10.1
Copper	1	12*	20,000	200	500	7	3	2	<1	4	2	10	i	2	<1	1	<1	<1	4	<1	2	3	5	-	<1	-	<1	<10
Nickel	1	97*	200	200	1000	10	7	7	9	6	<1	14	8	3	<1	4	2	3	6	2	1	7	8		7	-	4	62
Lead	1	87* 70*	100	2000	100	<1	<1	<1 37	<1	<1 57	<1	34 40	1 0	<1	<1 4	<1 4	<1 15	<1	<1	1	<1	<1	<1		<1	-	<1	<10 70
Zinc Mercury	5 0.1	0.6	30,000 10	2000	20,000	32 <0.1	<0.05	<0.1	<0.05	<0.1	<0.05	<0.1	<0.05	50 <0.1	<0.05	< 0.05	<0.05	<0.05	31 <0.1	64 <0.05	24 <0.1	<0.05	38 <0.1		< 0.05		6 <0.05	<0.1
Fluoride	100	0.0	1500	1000	2000	3600	850	4500	2700	1500	2300	800	1100	35000	17000	1100	7400	10000	12000	8200	14000	12000	4400	-	370	-	670	3000
Non Metallic Inorganics																												
ree Cyanide	4	7 NA	800			<4 4		<4 <4		<8 <8		<8 <8		<4 <4					<4 <4		<4 <4		<4 <4					
Fotal Cyanid∈ Fotal Petroleum Hydrocarbons (TPF		NA				4	-	<4		<8		<8		<4					<4		<4		<4					
TPH C6-C9	20										<10					240								<20	1	<20		
TPH C10-C14	50										<50					180								<50		<50		
TPH C15-C28	100										<100					1400								<100		<100		
TPH C29-C36 TPH C6-C36	100	LOR		LOR	LOR						<100 <100					<100 1820								<50 <50		<50 <50		
Polycyclic Aromatic Hydrocarbons (F	PAH)	LON		LOIX	LOIX						×100					1020								<30		230		
Naphthalene	0.1	16				<0.1		<0.1		5.2	<0.1	0.2	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Acenaphthylene	0.1					<0.1		<0.1		<0.1	<0.1	22.9	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Acenaphthene	0.1					<0.1		<0.1		9.4	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Fluorene	0.1			_		<0.1		<0.1		1.1	<0.1	2	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Phenanthrene	0.1	2				<0.1		<0.1		0.6	<0.1	0.4	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Anthracene	0.1	0.4				<0.1		<0.1		0.6	<0.1	0.1	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Fluoranthene	0.1	1.4				0.1		<0.1		1	<0.1	0.2	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Pyrene	0.1					0.1		<0.1		0.7	<0.1	0.1	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Benz(a)anthracene	0.1					<0.1		<0.1		0.2	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Chrysene	0.1					<0.1		<0.1		0.2	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Benzo(b)&(k)fluoranthene Benzo(a) pyrene	0.05	0.2				0.1		<0.2		0.3	< 0.2	<0.2 <0.05	<0.2	<0.2	<0.2		< 0.2		0.2		<0.2		< 0.2	<0.2		< 0.2		
Indeno(1,2,3-c,d)pyrene	0.05	0.2				<0.1	-	<0.05		0.22 <0.1	<0.05	<0.05	<0.05	<0.1	<0.05		<0.05		<0.14		<0.1		<0.05	<0.05		<0.05		
Dibenz(a,h)anthracene	0.1					<0.1		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Benzo(a.h.i)pervlene	0.1					<0.1		<0.1		0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Semivolatile Organic Compounds (S			1			40.1		40.1		0.1	40.1	40.1	40.1	40.1	40.1		40.1		40.1		40.1		40.1	40.1		40.1		
Organochlorine Pesticides (OCP)																												
alpha-BHC	2																											<2
HCB delta-BHC	2																											<2
Heptachlor	2	0.09																										<2 <2 <2
Aldrin	2	0.001																										<2
Heptachlor epoxide	2	0.08																										<2
Chlordane Endosulfan	2	0.06																										<2 <2 <2 <2
Dieldrin	2	0.01																										
DDE	2	0.03																										<2
Endrin	2	0.02																										<2 <2
DDD Endrin aldehyde																												<2
																												<2
Endosulfan sulfate	2																											<2
DDT	2 2 4	0.01																										<2 <2
DDT Organophosphorous Pesticides (OF	2 2 4																											<2 <2 <2 <2 <2 <2 <2 <4
DDT Organophosphorous Pesticides (OF Dichlorvos	2 2 4 PP[2	0.01																										<2 <2 <2 <2 <2 <2 <4 <4
DDT Organophosphorous Pesticides (OF Dichlorvos Dimethoate Diazinon	2 2 4 PPP 2 2 2 2																											<2 <2 <2 <2 <2 <2 <4 <4
DDT Organophosphorous Pesticides (OF Dichlorvos Dimethoate Diazinon Chlorpyrifos-methy	2 2 4 PPP 2 2 2 2 2 2 2	0.01 0.15 0.01																										<2 <2 <2 <2 <2 <2 <4 <4
DDT Organophosphorous Pesticides (OF Dichlorvos Dimethoate Diazinon Chlorpyrifos-methy Malathior	2 2 4 PPP 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05																										<2 <2 <2 <2 <2 <2 <4 <4
DDT Organophosphorous Pesticides (OF Dichlorovs Dimethoate Diazinon Chlorpyrifos-methy Malathior Fenthion	2 2 4 PPP 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01																										2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DDT Organophosphorous Pesticides (OF Dichlorvos Dimethoate Diazinon Chlorpyrifos-methy Malathior	2 2 4 PPP' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05																										2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DDT Organophosphorous Pesticides (OF Dichloryos Dimethoate Diazinon Diazinon Chlorpyrilos-nethy Malathior Fenthion Chlorpyrilos Bromophos-ethy Chlorderwilophos	2 2 4 PPP' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05																										22 22 22 24 44 22 22 22 22 22 22 22 22 2
DDT Organophosphorous Pesticides (OF Dichlorvos Dinethoras Diazinon Chlorpyrifos-methy Malathior Fenthion Chlorpyrifos Bromophos-ethy Chlorenviphos Prothiolos	2 2 4 PPP' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05																										22 22 22 24 44 22 22 22 22 22 22 22 22 2
DDT Organoshosphorous Pesticides (OF Dichlorvos Direthoate Daziron Diaziron Chioryprilos-methy Maltathior Ferthion Chloryprilos Bromophos-ethy Chlorifenvinghos Prothiolos Ethion	2 2 4 PPP' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05																										2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DDT Organophosphorous Pesticides (OF Dichlorova Directions of Dichlorova Directions of Dichlorova Diazzinon Dichlorova Diazzinon Dichlorova Diazzinon Chlorova Dichlorova Diazzinon Dichlorova Dichlor	2 2 4 PPP' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05 0.2																										22 22 22 24 44 22 22 22 22 22 22 22 22 2
DDT Organophosphorous Pesticides (OF Dichlorva Dichlorva Dinethoate Diazinon Chlorpyrifos-methy Malathior Fenthion Chlorpyrifos Bromophos-ethy Chlordervinghos Prothiolos Ethion Phenolis Pothalate Esthers	2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05 0.2																										22 22 22 24 44 22 22 22 22 22 22 22 22 2
DDT Organonhosphorous Pesticides (OF Dichlorovs Direthorous Diazhoro Diazhoro Chlorpyrifos-methy Malathior Ferthion Chlorpyrifos Bromophos-eithy Districtory Bromophos-eithy Districtory Bromophos-eithy Districtory Bromophos Eithor Phenois Total Phenoics Phthalate Esthers Direthylphibalate	2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05 0.2																										22 22 22 24 44 22 22 22 22 22 22 22 22 2
DDT Organophosphorous Pesticides (OF Dichlorva Dinethoats Diazinon Chlorpyrifos-methy Materior Berndhior Fenthion Chlorpyrifos Bromophos-ethy Chlordenvinghos Prothiolos Ethion Phenois Phenois Phenois Dinethylphthalatt Diothylophthalatt	2 2 2 4 4 PPP 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05 0.2																										22 22 22 24 44 22 22 22 22 22 22 22 22 2
DDT Organonhosphorous Pesticides (OF Dichlorovs Direthorous Diazhoro Diazhoro Chlorpyrifos-methy Malathior Ferthion Chlorpyrifos Bromophos-eithy Districtory Bromophos-eithy Districtory Bromophos-eithy Districtory Bromophos Eithor Phenois Total Phenoics Phthalate Esthers Direthylphibalate	2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05 0.2																										22 22 22 22 24 44 22 22 22 22 22 22 22 2
DDT Organophosphorous Pesticides (OF Dichlorvos Dinethorate Diazinon Chloryprifos-methy Malathior Ferthion Chloryprifos Evenophos-ethy Chlorientyprifos Evenophos-ethy Chlorientyprifos Evenophos-ethy Chlorientyprifos Evenophos	2 2 4 4 PPF 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05 0.2																										22 22 22 24 44 22 22 22 22 22 22 24 24 2
DDT Organophosphorous Pesticides (OF Dichlorvos Dinelhords Diazinon Dihorpyrilos-methy Malathior enthion Dihorpyrilos Stomophos-ethy Dihorenyrilos Stomophos-ethy Directorylos Stomophos-ethy Stom	2 2 4 4 PPP 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05 0.2																										22 22 22 22 24 44 22 22 22 22 22 22 22 2
DDT Organophosphorous Pesticides (OF Dichlorvos Dinethorate Diazinon Chloryprifos-methy Malathior Fenthion Chloryprifos Enthion Ent	2 4 4 PPP' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05 0.2																										22 22 22 24 44 22 22 22 22 22 22 24 24 2
DDT Organophosphorous Pesticides (OF Dichlorva Dichlorva Dichlorva Dinethoate Diazinon Chlorpyrifos-methy Malathior Fenthion Chlorpyrifos Bromophos-ethy Chlorfenvirphos Prothiofos Ethion Phenois Prenois Prenois Dinethylphthalate Dichtylphthalate Dichtylphthalate Nitrosamines Total Phraomines Total Phraomines Total Phraomines Total Phraomines Total Strong Market Mitrosamines Total Nitrosamines Total Haloethers Total Haloethers	2 2 4 4 PPF 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05 0.2																										2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DDT Organochosphorous Pesticides (OF Dichlorova Directions Diazinon Diazino	2 4 4 PPP' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05 0.2																										2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DDT Organophosphorous Pesticides (OF Dichlorvos Dinethoras Diazinon Chlorpyrifos-methy Malathior Fenthion Chlorpyrifos Bromophos-ethy Chlorentyrifos Bromophos Bromoph	2 2 2 4 4 PPP 4 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05 0.2																										2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DDT Organophosphorous Pesticides (OF Dichlorova Dinethoate Diazinon Dinethoate Diazinon Dinorpyrios-methy Malatinior Territion Dihorpyrios Dihorpyrios Dihorpyrios Dihorpyrios Dihorpyrios Dinorpyrios Dihorpyrios Dihorpyrios Dihorpyrios Dihorpyrios Dihorpyrios Dihorpyrios Prothiofos Strict Dinorpyrios Dinor	2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.01 0.15 0.01 0.05 0.2																										2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

TABLE LR11 Groundwater Analytical Results for VOCs and SVOCs

Sample Identification	PQL		Guideline		MW06	MW09	MW10	MW105	MW107	MW21
Date	FUL	95% Fresh A	Irrigation	Stock	2/5/12	30/4/12	30/4/12	10/7/14	11/7/14	2/5/12
PAEC Sampled					Background	FLS	FLS	Carbon Plant	Carbon Plant	PRA
Sample Appearance					Clear	Cloudy	Turbid	Cloudy	Clear	Clear
Sample collected by					KJG	KJG	KJG	KJG	KJG	KJG
					1.00	1.00	1.00	1.00	1.00	1.00
Volatile Organic Compounds (VOCs) an	d Semiv	olatile Organi	c Compounds	(SVOCs)						
Monocyclic Aromatics										
Benzene					<2	<2	<2	1	<2	<2
Other Monocyclic Aromatics					<2	<2	<2	<2	<2	<2
Chlorinated Hydrocarbons										
Cis-1, 2-dichloroethane					<1	<1	<1	1	<1	<1
Chloroform					<1	<1	<1	5	<1	<1
Chlorobenzene					<1	<1	<1	150	<1	<1
1,4-dichlorobenzene					<1	<1	<1	9	<1	<1
Organochlorine Pesticides (OCP)										
All OCPs	2				<2	<2	<2	<2	<2	<2
Organophosphorous Pesticides (OPP)										
All OPPs	2				<2	<2	<2	<2	<2	<2
Sulfonated Compounds										
Carbon Disulfide	4	320			<4	<4	<4	<4	<4	<4
Fumigants										
Total Fumigants	4	320			<4	<4	<4	<4	<4	<4
Oxygenated Compounds										
Total Oxygenated Compounds	4	320			<4	<4	<4	<4	<4	<4
Phenols										
Total Phenolics	4	320			<4	<4	<4	<4	<4	<4
Phthalate Esthers										
Dimethylphthalate	2	3700			<2	<2	<2	<2	<2	<2
Diethylephthalate	2	1000			<2	<2	<2	<2	<2	<2
Nitrosamines										
Total Nitrosamines	2				<2	<2	<2	<2	<2	<2
Nitroaromatics and Ketones										
Total Nitroaromatics and Ketones	2				<2	<2	<2	<2	<2	<2
Haloethers	•			•						
Total Haloethers	2				<2	<2	<2	<2	<2	<2
Anilines and Benzidines								•		
Total Anilines and Benzidines	2				<2	<2	<2	<2	<2	<2
Miscellaneous Compounds										
Total Misscellaneous Compounds	2				<2	<2	<2	<2	<2	<2
L										

All results in µg/L
PQL = Practical Quantitation Limit.

^ ANZECC 2000 95% Protection Level for Receiving Water Type
Guidelines in *italics* are low level reliability guidelines

B NHMRC Australian Drinking Water Guidelines, 20110
Results shaded grey are in excess of the primary acceptance criteria: ANZECC 95%, NHMRC

FLS - Flammable Liquids Store PRA - Pot Rebuild Area

TABLE LR12 Soil Quality Assurance/ Quality Control Result

TABLE LR12 Soil Quality As																								
Sample Identification		DUP A	_	SB108			SB112	DUP C		SB119	DUP D		SB127	DUP E			DUP E1		SB116	DUP F			DUP G	1
Sample Depth (m)		-0.4	1		-0.1				1		-0.4			-0.6		0.4				0.1			3-0.4	1
Duplicate Type		boratory	RPD %		boratory	RPD %		oratory	RPD %		boratory	RPD %		boratory	RPD %		oratory	RPD %		boratory	RPD %		boratory	RPD %
Sample Profile		ILL	1		TLL			ARINE	1		ILL			JARINE			ARINE			ILL			JARINE	1
Sample collected by	H	(G		ŀ	KG		ŀ	G		H	(G		H	(G		K	G		ŀ	(G		K	(G	
Metals																								
Arsenic																								
Cadmium																								
Chromium																								
Copper																								İ
Lead																								
Mercury																								
Nickel																								
Zinc																								
Fluoride	73	36	102.8							36	48	25.0	0.6	0.25	140.0	0.6	0.5	20.0	140	130	7.7	52	37	40.5
Polycyclic Aromatic Hydrocarb	ons (PAH)																							
Naphthalene				0.50	0.50	0.0	0.50	0.50	0.0															
Acenaphthylene				0.50	0.50	0.0	0.50	0.50	0.0															
Acenaphthene				0.10	0.10	0.0	0.50	0.50	0.0															
Fluorene				0.50	0.50	0.0	0.50	0.50	0.0															
Phenanthrene				1.30	1.3	0.0	0.50	0.50	0.0															
Anthracene				0.30	0.3	0.0	0.50	0.50	0.0															
Fluoranthene				6.00	5.0	20.0	0.50	0.50	0.0															
Pyrene				6.00	5.0	20.0	0.50	0.50	0.0															
Benz(a)anthracene				3.4	4.3	20.9	0.50	0.50	0.0															
Chrysene				3.8	5.5	30.9	0.50	0.50	0.0															
Benzo(b)&(k)fluoranthene				10	14	28.6	0.10	0.10	0.0															
Benzo(a) pyrene				4.90	6	18.3	0.025	0.025	0.0															
Indeno(1,2,3-c,d)pyrene				4.70	5.2	9.6	0.50	0.50	0.0															
Dibenz(a,h)anthracene				0.50	0.6	16.7	0.50	0.50	0.0															
Benzo(g,h,i)perylene				4.1	4.6	10.9	0.50	0.50	0.0															
Total Petroleum Hydrocarbons	(TPH)					·															·			
TRH C6-C9																								
TRH >C10-C14	İ		1							1														
TRH >C15-C28																								
TRH >C29-C36	İ		1							1														1
Benzene																								
Toluene																								
Ethylbenzene																								
Xylenes																								

Note all units in mg/kg

Results <u>underlined</u> were not detected and are reported as half the detection limit for statistical purpose.

BOLD identifies where RPD results

intralaboratory	interlaboratory	
>50	>60	where both sample results exceed ten x PQL
>75	>85	where both sample results are within 5 to 10 x PQL
>100	>100	where both sample results are within 2 to 5 x PQL
AD>2 !	5 * POI	where one or both sample results are <2 v POI

AD>2.5 * PQL where one or BOLD identified where blanks >0

Where results are within two of the above ranges the most conservative criteria have been used to assess duplicate performance

TABLE LR12 Soil Quality As:

Sample Identification	SB133	DUP H		SB133	DUP H1		TP115	QA1		TP129	QA1A		TP136	QA2A		HA110	QA3A	
Sample Depth (m)		-0.4			3-0.4			-0.5			0.3			0-0.2			-0.4	
Duplicate Type		oratory	RPD %		boratory	RPD %		oratory	RPD %		oratory	RPD %		oratory	RPD %		oratory	RPD %
Sample Profile		IARINE	/*		JARINE	= ,,		ARINE	/-		ILL	/*		ILL	/-		ILL	//
Sample collected by		(G			KG		К	W	i		w		К	w	i		w	
						I				I								
Metals																		
Arsenic							2	2	0.0	6	20	70.0	6	10	40.0			
Cadmium							0.2	0.2	0.0	0.2	0.2	0.0	0.2	0.2	0.0			
Chromium							11	12	8.3	15	15	0.0	6	8	25.0			
Copper							0.5	0.5	0.0	8	11	27.3	10	13	23.1			
Lead							4	5	20.0	9	9	0.0	7	8	12.5			
Mercury							0.05	0.05	0.0	0.05	0.05	0.0	0.05	0.05	0.0			
Nickel							1	1	0.0	47	65	27.7	10	13	23.1			
Zinc							2	2	0.0	47	50	6.0	42	41	2.4			
Fluoride	27	25	8.0	27	27.0	0.0	2.1	1.6	31.3	200	1098	81.8	13	6	116.7			
Polycyclic Aromatic Hydrocarb	d																	
Naphthalene							0.50	0.50	0.0	0.5	0.50	0.0	0.50	0.50	0.0	0.05	0.05	0.0
Acenaphthylene							0.50	0.50	0.0	0.5	0.50	0.0	0.50	0.50	0.0	0.05	0.05	0.0
Acenaphthene							0.50	0.50	0.0	0.1	0.50	80.0	0.50	0.50	0.0	0.1	0.2	50.0
Fluorene							0.50	0.50	0.0	0.5	0.50	0.0	0.50	0.50	0.0	0.05	0.1	50.0
Phenanthrene							0.50	0.50	0.0	0.4	0.20	100.0	0.50	0.50	0.0	1.8	3.1	41.9
Anthracene							0.50	0.50	0.0	0.1	0.50	80.0	0.50	0.50	0.0	0.5	0.8	37.5
Fluoranthene							0.50	0.50	0.0	1	0.5	100.0	0.50	0.50	0.0	7.8	14	44.3
Pyrene							0.50	0.50	0.0	0.9	0.4	125.0	0.50	0.50	0.0	7.8	14	44.3
Benz(a)anthracene							0.50	0.50	0.0	0.5	0.2	150.0	0.50	0.50	0.0	5.5	8.3	33.7
Chrysene							0.50	0.50	0.0	0.5	0.2	150.0	0.50	0.50	0.0	5.5	8.2	32.9
Benzo(b)&(k)fluoranthene							0.10	0.10	0.0	1.1	1	10.0	0.10	0.10	0.0	13	20	35.0
Benzo(a) pyrene							0.025	0.025	0.0	0.64	0.23	178.3	0.025	0.025	0.0	8.1	13	37.7
Indeno(1,2,3-c,d)pyrene							0.50	0.50	0.0	0.5	0.2	150.0	0.50	0.50	0.0	5.8	10	42.0
Dibenz(a,h)anthracene							0.50	0.50	0.0	0.5	0.5	0.0	0.50	0.50	0.0	0.7	1	30.0
Benzo(g,h,i)perylene							0.50	0.50	0.0	0.5	0.20	150.0	0.50	0.50	0.0	5.5	9.3	40.9
Total Petroleum Hydrocarbons	(
TRH C6-C9							12.5	12.5	0.0	12.5	12.5	0.0	12.5	12.5	0.0			
TRH >C10-C14							<u>25</u>	<u>25</u>	0.0	<u>25</u>	<u>25</u>	0.0	<u>25</u>	<u>25</u>	0.0			
TRH >C15-C28							<u>50</u>	<u>50</u>	0.0	<u>50</u>	<u>50</u>	0.0	<u>50</u>	<u>50</u>	0.0			
TRH >C29-C36							<u>50</u>	<u>50</u>	0.0	<u>50</u>	<u>50</u>	0.0	<u>50</u>	<u>50</u>	0.0			
Benzene							0.5	0.5	0.0	0.5	0.5	0.0	0.5	0.5	0.0			
Toluene							1	1	0.0	1	1	0.0	1	1	0.0			
Ethylbenzene							0.5	0.5	0.0	0.5	0.5	0.0	0.5	0.5	0.0			
Xylenes			1				0.5	0.5	0.0	0.5	0.5	0.0	0.5	0.5	0.0	1		

Note all units in mg/kg

Results <u>underlined</u> were not detected and are reported as half the detection limit for statistical purpose.

BOLD identifies where RPD results

intralaboratory	interlaboratory	
>50	>60	where both sar
>75	>85	where both sar
>100	>100	where both sar

where both sample results exceed ten x PQL where both sample results are within 5 to 10 x PQL where both sample results are within 2 to 5 x PQL

AD>2.5 * PQL where one or both sample results are <2 x PQL BOLD identified where blanks >0

Where results are within two of the above ranges the most conservative criteria have been used to assess duplicate performance

TABLE LR13 Groundwater Quality Assurance/ Quality Control Results

Sample Identification	MW102	MW102 DUP A		MW104	DUP B		MW104	DUP B1	
Duplicate Type	Intralat	oratory	RPD %	Intrala	boratoy	RPD %	Trip	licate	RPD %
Date	9/07	/2014		9/07	/2014		9/07	/2014	1
Metals									
Aluminium	5	8900	99.9	1300	1300	0.0			
Arsenic	1	3	66.7	2	1	100.0			
Cadmium	0.05	0.05	0.0	0.05	0.05	0.0			
Chromium	0.5	11	95.5	6	6	0.0			
Copper	2	3	33.3	3	3	0.0			
Nickel	2	6	66.7	5	5	0.0			
Lead	0.5	4	87.5	0.5	0.5	0.0			
Zinc	4	14	71.4	8	8	0.0			
Mercury	0.025	0.025	0.0	0.025	0.025	0.0			
Fluoride	3200	3400	5.9	13000	14000	7.1			
Total Petroleum Hydroca	bons (TPH)								
TPH C6-C9	18	22	18.2						
TPH C10-C14	25	25	0.0						
TPH C15-C28	<u>50</u>	<u>50</u>	0.0						
TPH C29-C36	<u>50</u>	<u>50</u>	0.0						
Polycyclic Aromatic Hydr	ocarbons (P/	AH)							
Naphthalene				0.05	0.05	0.0	0.05	0.1	50.0
Acenaphthylene				0.05	0.05	0.0	0.05	0.1	50.0
Acenaphthene				0.05	0.05	0.0	0.05	0.1	50.0
Fluorene				0.05	0.05	0.0	0.05	0.1	50.0
Phenanthrene				0.05	0.05	0.0	0.05	0.1	50.0
Anthracene				0.05	0.05	0.0	0.05	0.1	50.0
Fluoranthene				0.1	0.1	0.0	0.1	0.1	0.0
Pyrene				0.2	0.2	0.0	0.2	0.1	100.0
Benz(a)anthracene				0.05	0.05	0.0	0.05	0.1	50.0
Chrysene				0.1	0.05	100.0	0.1	0.1	0.0
Benzo(b)&(k)fluoranthene				0.1	0.3	66.7	0.1	0.1	0.0

Note all units in mg/k

Benzo(a) pyrene

Indeno(1,2,3-c,d)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

Results <u>underlined</u> were not detected and are reported as half the detection limit for statistical purpose.

0.1

0.1

0.05

0.1

BOLD identifies where RPD results

intralaboratory interlaboratory

>50	>60	where both sample results exceed ten x PQL
>75	>85	where both sample results are within 5 to 10 x PQ
>100	>100	where both sample results are within 2 to 5 x PQL
AD>2.5	5 * PQL	where one or both sample results are <2 x PQL

BOLD identified whereblanks >0

Where results are within two of the above ranges the most conservative criteria have been used to assess duplicate performance

0.1

0.05

0.1

0.0

0.0

0.0

0.0

0.1

0.05

0.1

0.1

0.1

0.0

0.0

<u>0.1</u> 50.0

<u>0.1</u> 0.0

Appendix A

2012 Soil Investigation Results

TARIF I RA Call Assistation Results for	4h - Cla-																														
TABLE LR1 Soil Analytical Results for Sample Identification	tne Site			Guideline			MW06	MW06	SB11	SB12	SB13	MW14	MW15	MW16	MW16	MW17	MW 17	MW18	MW18	SB15	SB15	SB16	SB16	MW07	MW07	MW08	MW08	SB17	SB18	MW 19	MW19
Sample Depth (m)	PQL		1	1	Managemen		0-0.1	0.5-0.6	0.2-0.4	1.8-1.9	1.0-1.2	0-0.4	0.1-0.4	0.2-0.4	1.8-2.0	0.2-0.4	0.8-1.0	0-0.2	0.8-1.0	0.3-0.5	1-1.2	0.2-0.4	1-1.2	0-0.2	0.8-1.0	0.15-0.3	0.4-0.6	0.3-0.4	0.5-0.6	FILL 1	FILL 2
Date	, ac	HIL D ^A	HSL D ^B	EIL C/IC	Limits	" ESL C/F	13/04/2012	13/04/2012		18/04/2012	18/04/2012			18/04/2012		18/04/2012			19/04/2012	16/04/2012			16/04/2012		16/04/2012	16/04/2012	16/04/2012	18/04/2012		19/04/2012	19/04/2012
Date					Lillies		13/04/2012	13/04/2012	17/04/2012	10/04/2012	10/04/2012	15/04/2012	15/04/2012	10/04/2012	10/04/2012	10/04/2012	10/04/2012	15/04/2012	15/04/2012	10/04/2012	10/04/2012	10/04/2012	10/04/2012	10/04/2012	10/04/2012	10/04/2012	10/04/2012	10/04/2012	10/04/2012	15/04/2012	15/04/2012
Sample Profile							ALLUVIAL	RESIDUAL	FILL	FILL	FILL	FILL	FILL	FILL	ESTUARINE	FILL	ESTUARINE	FILL	ESTUARINE	ESTI JARINE	ESTUARINE	ESTI MRINE	ESTUARINE	TOPSOIL	ESTI JARINE	FILL	ESTUARINE	FILL	FILL	FILL	FILL
PAEC Sampled							Background	Background	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Refuelling	Refueling	Refueling	Refuelling	Refuelling	Refuelling	Refuelling	Refuelling	DSA	DSA	DSA	DSA
Sample collected by							KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG
Sample collected by							NJG	nuu	noo	NJO .	100	100	100	NJO	NJG	100	nuo	100	noo	NUU	100	100	100	100	Nau	nuu	nuu	NJQ	100	100	100
Metals																															
Aluminium	50	NL*			1 -		2270	10700	9550	10300	14200	14700	13800	7740	3180	6740	1310	32700	8210	620	12500	3410	1720	7710	5720	690	4280				-
Arsenic	1	3000		160		-	0.9	3.4	10.9	16.5	3.4	6.3	5.1	0.9	1.2	0.8	0.2	12	1.8	0.2	1.2	0.8	0.3	4.4	1.8	<0.1	0.2				$\overline{}$
Cadmium	0.1	900				-	<0.1	<0.1	<0.1	<0.1	0.1	0.1	2.4	<0.1	<0.1	<0.1	<0.1	0.4	<0.1	e0.1	e0.1	<0.1	<0.1	0.2	<0.1	0.2	e0.1				
Chromium (VI)	1	3600		320**		-	2.5	15.1	7.3	7.9	52.1	25.5	18	5	3.2	5.3	1.4	26.9	6	1.9	26.6	3.9	5.7	10.5	21.2	3.9	3.6				
Copper	2	240,000		210**		-	0.4	0.6	13.6	14.2	16	15.6	44.5	7.8	0.2	4.2	0.3	21.9	0.3	0.8	5.8	0.5	0.6	32.8	2.2	4.1	0.4				
Nickel	1	6000	-	140**			1.3	2	11	12.4	34.4	53	27.8	6.4	1.8	2	0.6	51.6	4.6	1.1	11.2	3.3	2.6	8.1	11.9	2.7	5.8				
Lead	2	1500		1800	-		2.3	8.1	6.3	6.5	25.8	9.2	44.4	3.6	1.8	37	0.6	20.6	3.3	2.5	12.8	4.8	1.2	49.4	4.6	3.6	1.4				r
Zinc	5	400.000		440**	-		5.3	2.9	51.6	53.4	178	70.4	115	18.8	0.6	43.4	0.5	288	1.4	2.6	32.6	2.8	1.3	384	7	59.9	12.1				
Mercury (inorganic)	0.05	730			-		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
Fluoride	40	17000°					150	140	240	150	1960	2350	3950	700	60	200	80	7740	650	830	100	60	280	3240	90	90	130				
Non Metallic Inorganics											,				,-										1						
Total Cyanide	1	1500		-			<1	<1	<1	<1	<1	<1	<1	3	<1	<1	<1	<1	<1												
Polycyclic Aromatic Hydrocarbons (PAH)																															
Naphthalene	0.5	-		370	-		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<4.0	<0.5
Acenaphthylene	0.5			-	-	-	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<4.0	< 0.5
Acenaphthene	0.5						<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	1.9	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	3.8	8.4	1.6
Fluorene	0.5						<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	2.2	4.2	0.8
Phenanthrene	0.5		-	-	-	-	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	0.8	< 0.5	< 0.5	<0.5	< 0.5	16.6	<0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	30.2	46.7	7.8
Anthracene	0.5		-	-	-	-	< 0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	3.4	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	6.3	9.6	1.6
Fluoranthene	0.5		-	-	-	-	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	0.7	3.8	< 0.5	< 0.5	<0.5	< 0.5	41.2	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	0.6	0.6	<0.5	<0.5	59.7	137	21.6
Pyrene	0.5		-	-	-	-	< 0.5	<0.5	< 0.5	<0.5	< 0.5	0.7	3	< 0.5	<0.5	<0.5	< 0.5	38.3	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	0.6	0.6	<0.5	<0.5	59.1	133	21.7
Benz(a)anthracene	0.5	-	-	-	-	-	< 0.5	< 0.5	<0.5	<0.5	<0.5	0.7	5.3	<0.5	< 0.5	<0.5	< 0.5	47.1	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	0.5	0.5	<0.5	<0.5	46.7	103	24.3
Chrysene	0.5	-	-	-	-	-	< 0.5	<0.5	< 0.5	<0.5	< 0.5	0.8	8.1	<0.5	<0.5	<0.5	< 0.5	50.3	< 0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	0.6	<0.5	<0.5	45.6	97.3	23.5
Benzo(b)&(k)fluoranthene	1				-	-	< 0.5	<0.5	<0.5	< 0.5	<0.5	1.1	9.6	<0.5	< 0.5	<0.5	<0.5	67.2	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	0.5	0.9	<0.5	<0.5	60.3	140	31
Benzo(k)fluoranthene	0.5		-	-	-	-	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	2.1	<0.5	< 0.5	<0.5	< 0.5	20.4	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	21.2	47.7	10
Benzo(a) pyrene	0.5		-	-	-	72 ^F	< 0.5	<0.5	< 0.5	<0.5	<0.5	0.6	2.1	<0.5	<0.5	<0.5	< 0.5	33.6	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	43.4	101	19.2
Indeno(1,2,3-c,d)pyrene	0.5		-	-	-	-	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.5	<0.5	<0.5	<0.5	< 0.5	29.2	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	41.6	57.5	17.5
Dibenz(a,h)anthracene	0.5		-	-	-	-	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	0.5	<0.5	<0.5	<0.5	<0.5	7.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	8.8	12.8	4.6
Benzo(g,h,i)perylene	0.5				-	-	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.8	<0.5	<0.5	<0.5	<0.5	28.8	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	46.1	65	19.9
Benzo(a)pyrene TEQ		40	-	-	-	-	< 0.5	<0.5	<0.5	<0.5	<0.5	1.87	4.5	<0.5	<0.5	<0.5	<0.5	58.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	70.1	150.2	31.6
Sum of reported PAH	-	4000	-	-	-	-	< 0.5	<0.5	<0.5	<0.5	<0.5	5.8	38.6	0.8	<0.5	<0.5	< 0.5	387	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.2	3.2	<0.5	< 0.5	475	963	205
Total Petroleum Hydrocarbons (TPH)						_																									
TPH C6-C9	10		260	-	800															<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C10-C14	50		NL	-	1000	170														<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
TPH C15-C28	100			-	5000	1700														<100	<100	<100	<100	<100	<100	1400	<100	<100	980	1870	400
TPH C29-C36	100	-			10,000	3300							-							<100	<100	<100	<100	120	<100	1960	<100	<100	1040	1890	470
TPH C10-C36 Polychlorinated Biphenyls	-			-		-														<50	<50	<50	<50	120	<50	3360	<50	<50	2020	3760	870
Total PCRs	1				1 .		1																								
Semi Volatile Organic Compounds																							L								
Total PAHs		4000	1																	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td></lor<>						_
Total Phenois	1	240.000	<u> </u>	<u> </u>		+	l					1	1			l			 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td> </td><td></td><td>$\overline{}$</td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td> </td><td></td><td>$\overline{}$</td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td> </td><td></td><td>$\overline{}$</td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td> </td><td></td><td>$\overline{}$</td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td> </td><td></td><td>$\overline{}$</td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td></td><td></td><td></td><td> </td><td></td><td>$\overline{}$</td></lor<></lor 				 		$\overline{}$
Phthalate Esters	5	240,000			<u> </u>		 					_	+			 				<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor 						
Prinalate Esters Nitrosamines	1			 	 		 					_	+			 				<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor 						
Nitroaromatics and Ketones	1		<u> </u>		+ :		 					_	+			 				<lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></td></lor<></lor 	<lor< td=""><td><lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<></td></lor<>	<lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<>	<lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor 						
Haloethers	0.5		—		 		 					_	+			 				<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<>						
Chlorinated Hydrocarbons	1		—		 		 					_	+			 				<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<>						
Anilines and Renzidines	1	_					t					t —	1			t				≼LOR ≼LOR	<lor <lor< td=""><td>«LOR</td><td>d OR</td><td><lor <lor< td=""><td>≼LOR ≼LOR</td><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor 	«LOR	d OR	<lor <lor< td=""><td>≼LOR ≼LOR</td><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor 	≼LOR ≼LOR						
Organochlorine Pesticides	1					<u> </u>	l					t	1			l				<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<>						
Organophosphorus Pesticides	0.5	_					t					t —	1			t				<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor <lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></lor </td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor <lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></lor </td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor <lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></lor </td></lor<></td></lor<>	<lor< td=""><td><lor <lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></lor </td></lor<>	<lor <lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></lor 	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<>						
Miscellaneous Compounds	0.5						t					t —	1			t				<lor< td=""><td>≺LOR</td><td><lor< td=""><td><lor <lor< td=""><td><lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></td></lor<>	≺LOR	<lor< td=""><td><lor <lor< td=""><td><lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></td></lor<></lor </td></lor<>	<lor <lor< td=""><td><lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></td></lor<></lor 	<lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<>	<lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor 						
Volatile Organic Compounds						•							1 -																		
Monocyclic Aromatic Hydrocarbons	5	-																													
Oxygenated Compounds	0.5	-											1												1						
Sulfonated Compounds	1	-											1												1						
Fumigants	0.5	-	-	-									1												1						
Halogenated Aliphatic Compounds	5	-	-	-									1												1						
Halogenated Aromatic Compounds	0.5	-	-	-									1												1						
Trihalomethanes	0.5						1						1			1									i e						

PAECS
CBP Clay Borrow Pit
FLS Flammable Liquids Store
AWP Andos Waste Pile
DSA Diesel Spray Area
CBWB Cathode Bay Washdown Bay
PRA Pot Rebuild Area

Page 1 of 2

TABLE LR1 Soil Analytical Results for the Site Sample Identification Sample Depth (in) Dote POL Sample Profile PAEC Sample Profile PAEC Sample Sample Collected by Mediate Aluminium 50 Anemic 15 An		HIL D ^A	HSL D ^B	Guideline EIL C/I ^c	Managemen		SB1	SB2	SB3	SB4	SB5	SB6	SB7	SB8	SB14						MW11	SB10	SB10	MW12	MW12	MW13	SB20 (i)	MW01	MW02	MW03A	MW05	MW21
Sample Depth (m) PQL Date Sample Profile PAEC Sample Sample Sample Older by Metals Metals		HIL D ^A	HSL D [®]	EIL C/IC	Managemen											SB14	MW09	MW 10	SB9	SB9												
Date Sample Profile PAEC Sampled Sample collected by Metals Aluminium 50		HIL D*	HSL D ^a	EIL C/I ^c			0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.4	0.6-0.8	0.1-0.3	0.2-0.4	0.3-0.4	0.6-0.8	0-0.2	0.5-0.6	1-1.2	0-0.2	0.4-0.6	0.2-0.4	0-0.05	0.3-0.4	0-0.05	0.4-0.5	1.8-2.0	0.2-0.4
PAEC Sampled Sample collected by Metals Aluminium 50					Limits ^D	ESL C/F		12/04/2012			12/04/2012							16/04/2012							17/04/2012		13/04/2012		11/04/2012		12/04/2012	
PAEC Sampled Sample collected by Metals Aluminium 50																																
PAEC Sampled Sample collected by Metals Aluminium 50							FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	ESTUARINE	FILL	FILL	FILL	FILL	FILL	FILL	TOPSOIL	FILL	FILL	FILL	TOPSOIL	FILL	FILL	FILL	FILL	FILL
Sample collected by Metals Aluminium 50							Pot Lines	Pot Lines	Pot Lines	Pot Lines	SPL Sheds	SPL Sheds	SPL Sheds	SPL Sheds		Maintenance	FLS	FLS	Washbay	Washbay	Washbay	CBWB	CBWB	AWP	AWP	AWP	Switchyard	CBP	CBP	CBP	CBP	PRA
Metals Aluminium 50							FR	FR	FR	FR	FR	FR	FR	FR	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	FR	KJG	KJG	KJG	KJG	KJG
Aluminium 50									- 111																							
Aluminium 50																																
		NL*				1 -	53300	139000	138000	41700	26900	23700	11800	11000	11600	2820	5460	20500	39800	12600	15000	60800	4640	55800	3260	36700		10400	14400	17600	9510	15800
		3000		160		-	4.5	28.9	8.8	14.6	5.1	3.4	2.4	1.9	3.6	0.9	6.4	16.4	17.1	23.9	5.8	10.8	1.4	10.1	1	10.5		4.9	7.9	4.1	4.9	1.3
Cadmium 0.1		900	-	100		-	0.7	1.8	1.4	0.8	0.2	0.2	0.1	0.1	<0.1	<0.1	0.4	0.8	11.1	0.2	0.2	4	<0.1	1.4	<0.1	<0.1		<0.1	<0.1	4.1	0.1	<0.1
		3600		320**	-	-					39.6				22.4				59.5		23.7		<0.1 8.7					14.6		-1-		
Chromium (VI) 1			-		-	-	26.8	35	14.8	36		36.5	21.9	14.2		3.5	12.8	13.2		18.8		51.2		46.8	4.4	10.9			22.4	27.9	16.3	44
Copper 2		240,000		210**		-	21.1	280	18.9	89.8	33.7	28	12.4	11.6	17.8	0.4	21.9	71.4	82	62	36.3	55.2	1.7	41.1	0.3	6.7		7.9	1.8	12.4	11.1	34.6
Nickel 1		6000		140**		-	98	159	166	65.7	49	39.3	24.1	18.6	69.9	1.9	59.9	14.7	152	29.4	24.5	77.4	6.5	103	3.4	79.9		13.3	4.9	35.4	15.8	27.6
Lead 2		1500	-	1800	-	-	25	430	28.7	247	18.3	39.7	8.6	10.1	8.8	1.9	18	107	185	66.4	48	58	3.3	34.1	2.6	7.5		8.4	11.1	26.2	15	2.8
Zinc 5		400,000		440**	-	-	229	5400	444	1210	232	179	65.3	362	90.7	1.1	260	1380	578	621	420	425	4.9	304	1	21.3		31.6	15.4	75.5	76.7	59.2
Mercury (inorganic) 0.05		730		-		-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	< 0.1	0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1
Fluoride 40		17000°	-	-		-	13400	26400	41900	20900	1470	680	520	1440	970	70	700	16200	39000	1230	960	10600	190	47100	1010	17700		310	190	2120	1030	190
Non Metallic Inorganics																																
Total Cyanide 1		1500		-		-											<1	<1			<1	4	<1	<1	1	<1						
Polycyclic Aromatic Hydrocarbons (PAH)				_																												
Naphthalene 0.5			-	370	-	-											<0.5	<0.5			< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	
Acenaphthylene 0.5				-		-											<0.5	<0.5			< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	
Acenaphthene 0.5				-		-											<0.5	<0.5			< 0.5	<0.5	<0.5	1.4	<0.5	0.6		<0.5	< 0.5	<0.5	<0.5	
Fluorene 0.5			-	-		-											<0.5	<0.5			< 0.5	<0.5	<0.5	0.9	<0.5	< 0.5		< 0.5	<0.5	<0.5	<0.5	
Phenanthrene 0.5				-		-											<0.5	<0.5			0.6	1.8	<0.5	15.2	<0.5	5		< 0.5	<0.5	<0.5	<0.5	
Anthracene 0.5			-	-		-											<0.5	<0.5			< 0.5	0.6	<0.5	4.1	<0.5	1.1		<0.5	<0.5	0.8	<0.5	
Fluoranthene 0.5				-		-											<0.5	1.1			2	10.6	<0.5	56.5	<0.5	20.4		<0.5	<0.5	0.7	<0.5	
Pyrene 0.5				-		-											<0.5	1			1.9	9.4	<0.5	52.2	<0.5	20.5		<0.5	<0.5	<0.5	<0.5	
Benz(a)anthracene 0.5																	<0.5	0.5			1.8	13.8	<0.5	52.6	<0.5	17.3		<0.5	<0.5	0.9	0.6	
Chrysene 0.5		-		-	-	-	_										0.6	0.5		_	2	24.3	<0.5	74.3	<0.5	17.3		<0.5	<0.5	2.2	1.4	
Benzo/h)&/k/fluoranthene 1			-	-		-	+										1.1	0.8		-	3.3	39	<0.5	88.6	<0.5	26.6		1	<1	3	3	
Benzo(k)fluoranthene 1 Benzo(k)fluoranthene 0.5		-			-	-											r0.5	e0.5			1.2	10.8	<0.5	31.2	<0.5	20.0		<0.5	<0.5	<0.5	<0.5	$\overline{}$
		-	-														<0.5	<0.5			1.7		<0.5	29.4	<0.5			0.5	<0.5		<u.5< td=""><td></td></u.5<>	
		-	-	-	-	72 ^F																8.9				16.1				1.2		
Indeno(1,2,3-c,d)pyrene 0.5		-		-													<0.5	<0.5			1.2	10.3	<0.5	20.7	<0.5	11.4		<0.5	<0.5	<0.5	<0.5	
Dibenz(a,h)anthracene 0.5		-	-	-	-	-											<0.5	<0.5			<0.5	3.1	<0.5	7.2	<0.5	2.5		<0.5	<0.5	0.5	<0.5	
Benzo(g,h,i)perylene 0.5	_	-	-	-	-	-											<0.5	<0.5			1.5	16	<0.5	24	<0.5	14.5		<0.5	<0.5	<0.5	<0.5	
Benzo(a)pyrene TEQ	_	40		-		-											<0.5	<0.5			2.98	19.79	<0.5	56.9	<0.5	25.6		<0.5	<0.5	1.52	1.34	
Sum of reported PAH -		4000		-		-											1.7	3.9			17.2	149	<0.5	458	<0.5	165		0.5	<0.5	0.7	<0.5	
Total Petroleum Hydrocarbons (TPH)																																
TPH C6-C9 10		-	260	-	800	-																										
TPH C10-C14 50		-	NL	-	1000	170																										
TPH C15-C28 100		-		-	5000	1700																										
TPH C29-C36 100		-	-	-	10,000	3300																										
TPH C10-C36		-	-	-	-	-																										
Polychlorinated Biphenyls																																
Total PCBs 1	Т			-		-	<0.01	<0.01	<0.01	<0.01																	<0.1					
Semi Volatile Organic Compounds																																
Total PAHs 1		4000	-	-		-									<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td>T</td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td>T</td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td>T</td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td>T</td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>						T				<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Total Phenois 1		240,000		-		-									<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>										<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Phthalate Esters 5			-	-		-									<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>										<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Nitrosamines 1															<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>		1								<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Nitroaromatics and Ketones 1				-			1 -								<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>					1			1		<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Haloethers 0.5				-		-	1 -								<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>_</td><td></td><td></td><td>1 1</td><td></td><td></td><td></td><td>l</td><td><lor< td=""><td><lor< td=""><td><lor <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></lor </td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>_</td><td></td><td></td><td>1 1</td><td></td><td></td><td></td><td>l</td><td><lor< td=""><td><lor< td=""><td><lor <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></lor </td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td>_</td><td></td><td></td><td>1 1</td><td></td><td></td><td></td><td>l</td><td><lor< td=""><td><lor< td=""><td><lor <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></lor </td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td></td><td>_</td><td></td><td></td><td>1 1</td><td></td><td></td><td></td><td>l</td><td><lor< td=""><td><lor< td=""><td><lor <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></lor </td></lor<></td></lor<></td></lor<>		_			1 1				l	<lor< td=""><td><lor< td=""><td><lor <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></lor </td></lor<></td></lor<>	<lor< td=""><td><lor <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></lor </td></lor<>	<lor <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></lor 	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Chlorinated Hydrocarbons 1				1	-	1 :-	1								<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td> </td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td> </td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td> </td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td> </td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>		1			1			 		<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Anilines and Benzidines 1		-			1		1								<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>+</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>+</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td>+</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td></td><td>+</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>		+			1					<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Organochlorine Pesticides 1		-				1	1								<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td>_</td><td></td><td></td><td>1</td><td></td><td></td><td> </td><td></td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td>_</td><td></td><td></td><td>1</td><td></td><td></td><td> </td><td></td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td></td><td>_</td><td></td><td></td><td>1</td><td></td><td></td><td> </td><td></td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td></td><td>_</td><td></td><td></td><td>1</td><td></td><td></td><td> </td><td></td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 		_			1			 		<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor 	<lor <lor< td=""></lor<></lor
		- +		-		-	-		\vdash		\vdash				<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 		-						-	-	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor 	<lor <lor< td=""></lor<></lor
				<u> </u>	-	-	1													_			1			1	-	<lor ≠LOR</lor 	<lor< td=""><td><lor <lor< td=""><td><lor ≠LOR</lor </td><td></td></lor<></lor </td></lor<>	<lor <lor< td=""><td><lor ≠LOR</lor </td><td></td></lor<></lor 	<lor ≠LOR</lor 	
Miscellaneous Compounds 0.5		-				1 -	1								<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>L</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><1.UR</td><td>≺LOR</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>L</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><1.UR</td><td>≺LOR</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>L</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><1.UR</td><td>≺LOR</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>L</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><1.UR</td><td>≺LOR</td></lor<></td></lor<></td></lor<></td></lor<>					1			1	L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><1.UR</td><td>≺LOR</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><1.UR</td><td>≺LOR</td></lor<></td></lor<>	<lor< td=""><td><1.UR</td><td>≺LOR</td></lor<>	<1.UR	≺LOR
Volatile Organic Compounds																																-
Monocyclic Aromatic Hydrocarbons 5				-		-	<0.01	<0.01	<0.01	<0.01																	<lor< td=""><td></td><td></td><td></td><td></td><td></td></lor<>					
Oxygenated Compounds 0.5				-		-	< 0.01	<0.01	<0.01	<0.01										1							<lor< td=""><td></td><td></td><td></td><td></td><td></td></lor<>					
Sulfonated Compounds 1	_		-	-		-	<0.01	< 0.01	<0.01	<0.01																	<lor< td=""><td></td><td></td><td></td><td></td><td></td></lor<>					
Fumigants 0.5				-		-	<0.01	<0.01	<0.01	<0.01																	<lor< td=""><td></td><td></td><td></td><td></td><td></td></lor<>					
Halogenated Aliphatic Compounds 5				-		-	<0.01	<0.01	<0.01	<0.01																	<lor< td=""><td></td><td></td><td></td><td></td><td></td></lor<>					
Halogenated Aromatic Compounds 0.5			-	-		-	<0.01	<0.01	<0.01	<0.01																	<lor< td=""><td></td><td></td><td></td><td></td><td></td></lor<>					
Trihalomethanes 0.5		-		-	-	-	< 0.01	< 0.01	<0.01	< 0.01																						

The facility of the section of the s

PAECs
CBP Clay Borrow Pit
FLS Plammable Liquids Store
AWP Andoe Waste Pile
DSA Diesel Spray Area
CBWB Cathode Bay Washdown Bay
PRA Pot Rebuild Area

Page 2 of 2

TABLE LR2 Soil Analytical Results for Drainage Lines and Dams

Sample Identification							D1	D2	D3	D5	D6	D7	D8	D8-BASE	D9	D10	D11	D11-1	D12	D12-1
Sample Depth (m)	PQL	HIL D ^A	HSL D ^B	EII 0//C	Management	EOL OUE	0-0.3	0-0.2	0-0.2	0-0.2	0-0.05	0-0.3	0-0.1	0.1-0.35	0-0.2	0-0.05	0-0.2	0.2-0.4	0-0.2	0.3-0.4
Date		HIL D	HSL D	EIL C/I ^C	Limits ^D	ESL C/I ^E	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012
•																				,
Sample Profile							SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	CLAY	RESIDUAL	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	CLAY
PAECs Sampled							Western Dam	Western Dam	Southern Dam	Drain at SPL Sheds	Drain at AWP	Drain at AWP	Drain at Alcan Mound	Drain at Alcan Mound	Drain near Carbon Plant	Drain near DSA	East Surge Dam	East Surge Dam	East Surge Dam	East Surge Dam
Sample collected by							FR	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR
Metals																				
Aluminium	50	NL*	-	-	-	-	166000	31900	14200	25100	26800	39200	40900	15100	10900	23900	12800	13500	56000	5030
Arsenic	1	3000	-	160	-	-	14.1	9.3	5.9	5.7	9.2	17	16.1	3.2	6.7	4	5.7	3	16	0.6
Cadmium	0.1	900	-	-	-		2.6	0.6	0.2	0.6	3	2	4.4	<0.1	<0.1	1.1	1.2	0.3	4.5	<0.1
Chromium	1	3600	-	320**	-		25.8	23.2	23.2	27.8	41.4	35.9	49.5	18.8	13.5	15.5	16	13.7	55.4	6.4
Copper	2	240,000	-	210**	-	-	43.6	10.7	12.9	10	40.8	31.4	45.7	3.7	5.4	11.6	3.7	2	35.9	1
Nickel	1	6000	-	140**	-	-	173	78	21.1	22.2	118	87	119	10.7	9	49.6	10.9	6.9	103	3.7
Lead	2	1500	-	1800	-	-	49.9	17.9	24.3	24.7	52.1	71.4	79.6	11.4	12.2	31.8	12.7	7.7	63.2	3.8
Zinc	5	400,000	-	440**	-		1290	328	122	132	707	599	955	43	110	197	72.4	28.4	671	5.9
Mercury	0.05	730	-		-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
Fluoride	40	17000*	-	-	-	-	38500	5850	150	1110	3810	7350	3790	520	750	3330	1480	3010	2510	210
Non Metallic Inorganics																				
Total Cyanide	1	1500	-	-	-	-	2	<1	<1	<1	1	2	24	2	<1		2	2	86	4
Polycyclic Aromatic Hydro	ocarbons	(PAH)																		
Naphthalene	0.5	-	-	370	-	-	<0.5	<0.5	<0.8	<0.8	<8.0	<0.5	<0.8	<0.5	<0.5	<0.5	<4.0	<0.5	<0.8	<0.5
Acenaphthylene	0.5	-	-	-	-	-	<0.5	<0.5	<0.8	<0.8	<8.0	<0.5	<0.8	<0.5	<0.5	<0.5	<4.0	<0.5	<0.8	<0.5
Acenaphthene	0.5	-	-		-		1.4	<0.5	<0.8	<0.8	<8.0	2.8	2.5	<0.5	<0.5	<0.5	<4.0	<0.5	<0.8	< 0.5
Fluorene	0.5	-	-		-		1.2	<0.5	<0.8	<0.8	<8.0	2.2	1.5	<0.5	<0.5	<0.5	<4.0	<0.5	<0.8	< 0.5
Phenanthrene	0.5	-	-	-	-		3.4	<0.5	<0.8	<0.8	38.3	20	18.1	1.7	<0.5	0.7	<4.0	< 0.5	2.3	<0.5
Anthracene	0.5	-	-	-	-	-	0.7	<0.5	<0.8	<0.8	14.1	5.1	4.6	0.5	<0.5	<0.5	<4.0	<0.5	<0.8	<0.5
Fluoranthene	0.5	-	-		-		5.5	0.6	2.4	0.9	107	86.4	65.4	7.9	<0.5	3.7	33.1	0.7	12.9	< 0.5
Pyrene	0.5	-	-		-		4.3	0.5	2.1	0.8	102	79.9	60.4	7.9	<0.5	3.6	31.3	0.8	12.5	< 0.5
Benz(a)anthracene	0.5	-	-		-		3.4	0.6	2.6	1.1	109	73.3	63.4	8.5	<0.5	4.4	46.2	1.3	17.8	< 0.5
Chrysene	0.5	-	-	-	-		3.8	0.8	4.6	1.3	116	84.8	64.9	11.2	<0.5	6.8	91	2.1	23.4	<0.5
Benzo(b)&(k)fluoranthene	1	-	-	-	-	-	6.1	1.6	8.6	2.4	224	145	151	30.1	0.6	11.5	172	3.9	46.5	<0.5
Benzo(k)fluoranthene	0.5	-	-	-	-	-	1.5	<0.5	2	<0.8	61.7	46.2	35.9	7.7	<0.5	3	37.2	0.9	11	<0.5
Benzo(a) pyrene	0.5	-	-	-	-	72 ^F	2.4	0.6	2.1	0.8	<u>85.6</u>	57.1	58.8	15.1	<0.5	3.4	21.7	0.9	16	<0.5
Indeno(1,2,3-c,d)pyrene	0.5	-	-	-	-		1.4	<0.5	1.5	<0.8	54.6	32.2	46.3	13	<0.5	2.8	16.2	0.6	10.9	<0.5
Dibenz(a,h)anthracene	0.5	-	-		-	-	<0.5	<0.5	<0.8	<0.8	17.2	8.3	12.3	3	<0.5	0.9	6.2	<0.5	3.1	<0.5
Benzo(g,h,i)perylene	0.5	-	-		-	-	1.9	0.6	2.2	<0.8	66.9	38.2	59.9	16.6	<0.5	3.7	20.4	0.9	14.2	<0.5
Benzo(a)pyrene TEQ		40	-	-	-	-	3.9	1.1	4.0	1.6	149.6	96.3	102.0	24.3	<0.5	6.6	56.2	1.9	28.1	<0.5
Sum of reported PAH		4000	-	-	-	-	37	5.3	28.1	7.3	996	682	645	123	0.6	44.5	475	12.1	171	<0.5

All results are in units of mg/kg.

Blank Cell indicates testing was not completed

PQL = Practical Quantitation Limit.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

Results shown in shading are in excess of the primary health acceptance criteria

Results showin in underline are in excess of the primary ecological acceptance criteria

<LOR = Less than the Limit of Reporting

^B NEPM (2013) Soil Health Screening Level for Vapour Intrusion 'D' Commercial/ Industrial

^C NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

D NEPM (2013) Management Limits for TPH Fractions F1 to F4 in soil - note that the F1 to F4 fractions are different to the fractions reported here

^E NEPM (2013) Ecological Screening Level for Commercial/ Industrial

F Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects)

^{*} Fluoride (soluble) and aluminium Preliminary Screening Criteria from ENVIRON (2013) 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium'

^{**} EIL values calculated using site-specific CEC (7.26 meg/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

TABLE LR2 Soil Analytical Results for Drainage Lines and Dams

Sample Identification							COMPOSITE 1	COMPOSITE 2	COMPOSITE 3	COMPOSITE 4	ND4-BASE	ND7-BASE
Sample Depth (m)	PQL	HIL D ^A	HSL D ^B	EIL C/I ^C	Management	ESL C/I ^E					0.25-0.35	0.1-0.15
Date		HIL D	HSL D	EIL C/I	Limits ^D	ESL C/I	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012
Sample Profile							SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	CLAY	CLAY
PAECs Sampled							North Dam	North Dam	North Dam	North Dam	North Dam	North Dam
Sample collected by							FR	FR	FR	FR	FR	FR
Metals												
Aluminium	50	NL*			-	-	26300	24300	22800	8940	10300	15600
Arsenic	1	3000		160	-	-	7	6.4	5	2.9	3	4.6
Cadmium	0.1	900			-	-	5.4	3.7	1.6	0.5	<0.1	0.1
Chromium	1	3600		320**	-	-	24.9	19.3	16.4	8.9	13.6	21.2
Copper	2	240,000		210**	-	-	7.7	10.2	6.8	4.4	0.7	1.5
Nickel	1	6000	-	140**	-	-	27.4	41.3	70.3	28.6	4.2	7.6
Lead	2	1500	-	1800	-	-	23.8	19.2	10.8	6.2	5.8	9.2
Zinc	5	400,000	-	440**	-	-	308	677	840	184	6.8	46
Mercury	0.05	730	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoride	40	17000*	-	-	-	-	1390	1580	1880	860	340	7350
Non Metallic Inorganics												
Total Cyanide	1	1500	-	-	-	-	<1	<1	<1	<1	<1	<1
Polycyclic Aromatic Hydr	ocarbons	(PAH)										
Naphthalene	0.5	-	-	370	-	-	<0.8	<0.8	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	0.5	-	-	-	-	-	<0.8	<0.8	<0.5	<0.5	<0.5	<0.5
Acenaphthene	0.5	-	-	-	-	-	<0.8	<0.8	<0.5	<0.5	<0.5	<0.5
Fluorene	0.5	-	-	-	-	-	<0.8	<0.8	<0.5	<0.5	<0.5	<0.5
Phenanthrene	0.5	-	-	-	-	-	<0.8	<0.8	<0.5	<0.5	<0.5	<0.5
Anthracene	0.5	-	-	-	-	-	<0.8	<0.8	<0.5	<0.5	<0.5	<0.5
Fluoranthene	0.5	-	-	-	-	-	7.4	<0.8	<0.5	<0.5	<0.5	<0.5
Pyrene	0.5	-	-	-	-	-	6.9	<0.8	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	0.5	-	-	-	-	-	11.4	<0.8	<0.5	<0.5	<0.5	<0.5
Chrysene	0.5	-	-	-	-	-	24	<0.8	0.7	<0.5	<0.5	<0.5
Benzo(b)&(k)fluoranthene	1	-	-	-	-	-	36.9	0.8	1.2	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	0.5	-	-	-	-	-	9.8	<0.8	<0.5	<0.5	<0.5	<0.5
Benzo(a) pyrene	0.5	-	-	-	-	72 ^F	7.4	<0.8	<0.5	<0.5	<0.5	<0.5
Indeno(1,2,3-c,d)pyrene	0.5	-	-	-	-	-	6.9	<0.8	<0.5	<0.5	<0.5	<0.5
Dibenz(a,h)anthracene	0.5	-	-	-	-	-	2.6	<0.8	<0.5	<0.5	<0.5	<0.5
Benzo(g,h,i)perylene	0.5	-	-	-	-	-	9.1	<0.8	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ		40	-	-	-	-	16.8	<0.8	<0.5	<0.5	<0.5	<0.5
Sum of reported PAH		4000	-	-	-	-	122	0.8	1.9	<0.5	<0.5	<0.5

All results are in units of mg/kg.

Blank Cell indicates testing was not completed

PQL = Practical Quantitation Limit.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

Results showin in underline are in excess of the primary ecological acceptance criteria

<LOR = Less than the Limit of Reporting

^B NEPM (2013) Soil Health Screening Level for Vapour Intrusion 'D' Commercial/ Industrial

^C NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

D NEPM (2013) Management Limits for TPH Fractions F1 to F4 in soil - note that the F1 to F4 fractions are different to the fractions reported

^E NEPM (2013) Ecological Screening Level for Commercial/ Industrial

F Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hy

^{*} Fluoride (soluble) and aluminium Preliminary Screening Criteria from ENVIRON (2013) 'Preliminary Screening Level Health Risk Assessm

^{**} EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the I Results shown in shading are in excess of the primary health acceptance criteria

Appendix B

Sampling, Analysis and Quality Plan

Hydro Aluminium Kurri Kurri Smelter, Sampling Analysis and Quality Plan

Prepared for: Hydro Aluminium Kurri Kurri Pty Ltd

Prepared by: **ENVIRON Australia Pty Ltd**

Date: **June 2014**

Project Number: **AS130328**

Prepared by: Authorised by: Name: Kirsty Greenfield Name: Fiona Robinson Title: **Environmental Scientist** Title: Manager - Hunter Phone: 02 4962 5444 Phone: 02 4962 5444 Email: kgreenfield@environcorp.com Email: frobinson@environcorp.com Signature: Date: 4/6/14 Signature: Date: 4/6/14

This document is issued in confidence to Hydro Aluminium Kurri Kurri Pty Ltd for the of providing a Sampling, Analysis and Quality Plan for the Hydro Aluminium Kurri Kurri Smelter. It should not be used for any other purpose.

The report must not be reproduced in whole or in part except with the prior consent of ENVIRON Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No information as to the contents or subject matter of this document or any part thereof may be communicated in any manner to any third party without the prior consent of ENVIRON Australia Pty Ltd.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, ENVIRON Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

© ENVIRON Australia Pty Ltd

VERSION CONTROL RECORD

Document File	Date Issued	Version	Author	Reviewer
Name				
AS130328_Smelter_SAQP	June 2014	Draft 1	K Greenfield	F Robinson

Contents

			Page
1	Introductio		2
1.1	Background		2
1.2	•	and Scope of Work	2
1.3	Project Back	kground	2
2		nvestigations	3
2.1	•	he Phase 2 ESA	3
2.2		ste Stockpile	4
2.3	General Buf	fer Zone and Glen Ayr Drift	4
3	Conceptua	I Site Model	6
4	Data Qualit	y Objectives	7
5	Sampling F	Plan	10
5.1	Assessmen	t of Phase 2 ESA Results against NEPM (2013)	10
5.2	Data Gap A	nalysis	17
5.3	Potential Ar	eas of Environmental Concern	21
5.4	Sampling P	rogram	25
5.5	Sampling		29
5.5.1	•	ng Methodology	29
5.5.2		er Sampling Methodology	31
5.5.3	Sample Har	ndling and Preservation	32
6	Data Qualit	y Indicators	33
7	Basis for A	ssessment Criteria	34
7.1	Soil		34
8	Reporting I	Requirements	38
9	References	;	40
10	Limitations		41
10.1	User Relian	ce	41
List of	Figures		
	Figure 1:	Site Location Plan	
	Figure 2:	Conceptual Site Model	
	Figure 3:	Anode Waste Pile	
	Figure 4:	Refuelling Area	
	Figure 5:	Diesel Spray Area	
	Figure 6:	Carbon Plant	
	Figure 7:	Wash Bay	

Figure 8: Pot Lines

Figure 9: Ring Furnace Scrubber

Figure 10: Playing Fields

Figure 11: Area East of Playing Fields
Figure 12: Area East of Clay Borrow Pit
Figure 13: Storage Area West of Pot Lines

List of Tables

Table 5.1: Re-assessment of Identified Contamination from Phase 2 ESA Table 5.2: Assessment of Previously Inaccessible Buildings at the Smelter

Table 5.3: Potential Areas of Concern Requiring Investigation

Table 5.4: Sampling Program for PAECs
Table 5.5: Soil Sampling Methodology

Table 5.6: Groundwater Sampling Methodology

Table 6.1: Data Quality Indicators

Table 7.1: Soil Assessment Criteria (mg/kg) Health and Ecological Investigation Levels
Table 7.2: Soil Assessment Criteria for Vapour Intrusion – HSL D (mg/kg) – Sand

Table 7.3: ESLs and Management Limits for Petroleum Hydrocarbons

Table 7.4: Health Screening Levels for Asbestos Contamination in Soil (mg/kg)

Table 7.5 Site Specific Soil Assessment Guidelines for Fluoride (mg/kg)

June 2014 Page 1

Acronyms and Abbreviations

ACM Asbestos Containing Materials
AHD Australian Height Datum
ALS Australian Laboratory Services

ANZECC Australian and New Zealand Environment and Conservation Council

B(a)P Benzo(a)pyrene BGL Below Ground Level

BTEX Benzene, Toluene, Ethylbenzene & Xylenes (Monocyclic aromatic Hydrocarbons)

CT Certificate of Title

DEC NSW Department of Environment and Conservation, now EPA

DP Deposited Plan
DQI Data Quality Indicator
DQO Data Quality Objective
EIL Ecological Investigation Level

EPA NSW Environment Protection Authority

ESA Environmental Site Assessment

F Fluoride

GMU Groundwater Management Unit GPS Global Positioning System

Ha Hectare

HIL Health Investigation Level
HSL Health Screening Level
HRA Health Risk Assessment

km Kilometres LOR Limit of Reporting

m Metres

Mercury Inorganic mercury unless noted otherwise

Metals As: Arsenic, Cd: Cadmium, Cr: Chromium, Cu: Copper, Fe: Iron, Ni: Nickel, Pb: Lead, Zn:

Zinc, Hg: Mercury, Se: Selenium

mg/kg Milligrams per Kilogram mg/L Milligrams per Litre

m AHD Metres relative to the Australian Height Datum

m BGL Metres below ground level Metres below top of casing ML Megalitre, one million litres Micrograms per Litre

NATA National Association of Testing Authorities

NC Not Calculated ND Not Detected

NEHF National Environmental Health Forum
NEPC National Environment Protection Council
NEPM National Environment Protection Measure
NHMRC National Health and Medical Research Council

NSW New South Wales n Number of Samples

OH&S Occupational Health & Safety
PAH Polycyclic Aromatic Hydrocarbons

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RPD Relative Percent Difference
TRH Total Recoverable Hydrocarbons

UCL Upper Confidence Limit

US EPA United States Environment Protection Authority

µg/L Micrograms per Litre

VENM virgin excavated natural material

On tables is "not calculated", "no criteria" or "not applicable"

1 Introduction

1.1 Background

This report presents a Sampling, Analysis and Quality Plan (SAQP) for the second stage of a Phase 2 Environmental Site Assessment (ESA) to be completed at the Hydro Aluminium Kurri Kurri Smelter, located off Hart Road, Loxford, New South Wales, Australia, hereinafter referred to as 'the Site'.

1.2 Objectives and Scope of Work

The objective of the second stage of the Phase 2 ESA is to build upon the results of the first stage in understanding the potential for soil and groundwater contamination at the site that could impact on the use of the Site for commercial/ industrial landuse or cause impact to human health and the environment off-site.

The SAQP includes the following

- A summary of the first stage of the Phase 2 ESA;
- A conceptual site model, including sources of contamination, receptors and pathways between the sources and receptors;
- A data gap analysis;
- Development of Data Quality Objectives (DQOs) and Data Quality Indicators (DQIs);
- · Assessment criteria;
- · Reporting requirements.

1.3 Project Background

In 2012, Hydro suspended operations at the Kurri Kurri Smelter and it remains on care and maintenance mode. In preparation for possible closure, environmental investigation are being undertaken to understand remediation requirements at the Site and the potential for land divestment.

The Kurri Smelter used to produce 170,000 tonnes of aluminium metal per annum. The smelter commenced production in 1969 with a single potline. A second potline was commissioned in 1979, and a third added in 1985. In 2002, Hydro undertook an upgrade program, which increased production capacity to 170,000 tonnes. The smelter is surrounded by a 2,500ha buffer zone, part of which is used for agricultural purposes.

2 ENVIRON Investigations

Environ has completed a number of investigations at the Kurri Kurri Smelter since operations were suspended in 2012. The investigations relevant to the second stage of the Phase 2 ESA are outlined below.

2.1 Stage 1 of the Phase 2 ESA

ENVIRON completed Stage 1 of the staged Phase 2 ESA in 2012. Stage 1 included the following documents:

- ENVIRON (March 2012) 'Sampling, Analysis and Quality Plan, Kurri Kurri Aluminium Smelter'
- ENVIRON (1 November 2012) 'Phase 2 Environmental Site Assessment, Kurri Kurri Aluminium Smelter

Stage 1 involved the following tasks:

- A desktop study, including a review of historical and background data and a site walkover;
- The identification of 20 areas of concern and five contaminants of concern relating to the production of aluminium and ancillary operations;
- The development of a SAQP to assess the potential areas and chemicals of concern;
- Field investigations, including the drilling of 31 boreholes, installation of 21 groundwater monitoring wells, collection of 45 surface soil samples, 14 sediment samples and 28 groundwater samples;
- Analysis of soil, groundwater and sediment samples for a range of potential contaminants of concern;
- The development of a conceptual site model including sources of contamination, receptors and pathways between the sources and receptors;
- Recommendations for further investigations.

The Phase 2 ESA identified nine areas of concern that require further evaluation, including the Capped Waste Stockpile (formerly known as the Alcan Mound), Anode Waste Pile, East Surge Pond and associated drainage line, Diesel Spray Area, Carbon Plant, Glen Ayr Drift, Clay Borrow Pit, fluoride in soil and groundwater and aluminium in groundwater.

Other areas of concern located within the smelter site were also identified, including the Refuelling Area, Washdown Bay, West Surge Pond, North Dams 1 and 2, Cathode Bar Washdown Area, Pot Rebuild Area, Irrigation Area and General Buffer Zone.

Following the Phase 2 ESA, some of the identified areas of concern including the Capped Waste Stockpile, Glen Ayr Drift and the General Buffer Zone, were assessed separately.

2.2 Capped Waste Stockpile

Following the Phase 2 ESA, the Capped Waste Stockpile was notified as potentially contaminated land to the New South Wales Environment Protection Authority (EPA) under Section 60 of the Contaminated Land Management Act 1997. In response, the EPA requested further information regarding the contamination status of the notified area. ENVIRON completed an Environmental Site Assessment on the notified area in 2013, which included the following tasks:

- Review and collation of relevant historical information pertaining to the Capped Waste Stockpile and the surrounding leachate impact area;
- Field sampling of 14 wells;
- Completion of a pumping test to assess aquifer behaviour;
- Water quality sampling of 14 wells following pumping to assess variations in response to changes in the aquifer;
- Completion of a report identifying known information, data gaps and recommendations for further investigations to address the data gaps.

The recommended further investigations were undertaken, including a site-specific toxicological assessment to identify guidelines for fluoride in soil and waste at the site for human health and for the environment, delineation of the plume using a combination of existing data and further field investigations and a 3 monthly monitoring regime to monitor the leachate plume.

The following documents were produced for the Capped Waste Stockpile, noting the groundwater monitoring is on-going:

- ENVIRON (12 August 2012) 'Section 60 Notification Supporting Information'
- ENVIRON (13 December 2012) 'Environmental Site Assessment, Alcan Mound, Kurri Kurri Aluminium Smelter'
- ENVIRN (March 2013) 'Tier 2 Ecological Risk Assessment, Kurri Kurri Aluminium Smelter'
- ENVIRON (2 April 2013) Preliminary Screening Level, Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford'
- ENVIRON (11 October 2013) 'Plume Delineation Report, Alcan Mound'

2.3 General Buffer Zone and Glen Ayr Drift

In preparation for possible closure, environmental investigations were undertaken across the buffer zone to understand remediation requirements and the potential for land divestment. This work was undertaken in conjunction with the development of a Preliminary Masterplan (dated December 2012) which identified possible end land use scenarios. The Preliminary Masterplan identified 18 land parcels in the buffer zone. A separate environmental

investigation was completed for each land parcel. The reporting of these investigations is currently on-going.

The Glen Ayr Drift is a former underground coal mine located within the buffer zone. Assessment of land filling at the Glen Ayr Drift was undertaken as part of investigations of buffer zone land parcels for potential divestment. This assessment was reported in:

• ENVIRON (November 2013) 'Phase 2 Environmental Site Assessment, Residential Parcel 1'

3 Conceptual Site Model

Following field investigations and an assessment of the laboratory results, ENVIRON completed a conceptual site model in Stage 1 of the Phase 2 ESA. The conceptual site model is provided below. The location of the site is shown in Figure 1.

The site is situated at the foot of a low residual hill and within a low-lying estuarine swamp environment. The original landform was filled to provide a level, raised platform for construction. Fill material comprised sands, refractory brick waste and carbon waste. The fill material was placed over estuarine sands and high plasticity clay. The site is capped with concrete or bitumen surfacing with soil access points around garden beds and limited grassed areas.

Groundwater at the site was identified at shallow depths within the estuarine sands, between 1m and 5m bgs and flowing north to north east across the site. The presence of the deep ring furnace construction, which extends to bedrock, affects groundwater flow directions in this area, causing diversion of groundwater around the structure and localized groundwater mounding to the south of the structure. A shallow sand aquifer extending from the surface to depths of up to 2.0m is presented to the east of Alcan Mound. Groundwater seepage has been observed down-gradient of this area towards the north east. Groundwater flows within the estuarine sands of up to 14m/year have been estimated. Groundwater with the estuarine sands is not used at the site and is not considered a suitable aquifer for use down-gradient of the site.

The buffer zone includes low residual hills to the west and south and a low-lying swampy area to the north and east. The low-lying swampy area contains numerous dams and water courses which are accessible to livestock. A shallow aquifer is present within these estuarine sands and movement of groundwater from the site is expected to occur through the sand lenses to the north and north east. Discharge of groundwater to the surface water bodies is expected to occur. A separate confined aquifer at a higher elevation was identified in the western portion of the buffer zone within residual clays. The estuarine aquifers on site appear isolated from the underlying and surrounding residual clay and bedrock aquifers. A conceptual drawing of the site hydrogeology and geology is shown in Figure 2.

Activities undertaken within the buffer zone comprise cattle grazing, poultry farming, motor sports, residential use and irrigation of storm-water from the site. The remaining buffer zone is undeveloped and comprises bush land, easements and fire trails.

The site model has identified that the populations potentially exposed to site contaminants comprise humans, livestock and flora and fauna within the buffer zone. Exposure to contaminants on site is limited by site capping and restrictions to groundwater access under the current site use. Re-evaluation of this risk may be required in the event of a change of site use.

4 Data Quality Objectives

To ensure that reliable data of adequate type is collected and assessed for the Stage 2 Phase 2 ESA, the seven-step Data Quality Objective (DQO) approach, endorsed in NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme 2nd Edition, will be adopted. The DQOs set quality assurance and quality control parameters for the field and laboratory programs to ensure data of appropriate reliability will be used to assess the environmental condition at the Site.

ENVIRON has developed DQOs in accordance with the seven-step process, which is presented below.

Step 1 - State the Problem

The Site comprises a former aluminium smelter that began operating in 1969 and ceased in 2012. A Phase 2 ESA completed in 2012 identified a number of areas of concern requiring further investigation. The Phase 2 ESA was completed when the smelter was operational and not all areas of the Site could be assessed. As such, uncertainties remain over the soil and groundwater contamination at the Site. These uncertainties need to be reduced to assist with remediation planning.

Step 2 - Identification of the Goals (Decisions) of the Study

The following decisions are to be made from this study:

- New national guidelines for the assessment of site contamination were introduced in 2013 (National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1)). Does assessment of areas of concern identified for further evaluation in the Phase 2 ESA under the new guidelines change the outcome for any of these areas?
- Subsequent to the Phase 2 ESA, ENVIRON completed a Health Risk Assessment to determine preliminary screening levels for fluoride in soil for a range of landuses including commercial/ industrial land use. Does assessment of areas of concern identified for further evaluation in the Phase 2 ESA under the preliminary screening criterion change the outcome for any of these areas?
- The smelter has ceased operating. Now that the Site is fully accessible, can other areas of concern be identified that were inaccessible during the previous Phase 2 ESA?
- What is the extent of the impacts to soil and groundwater at specific areas of concern identified during the previous Phase 2 ESA and in the data gap analysis of previously inaccessible areas?
- Are further investigations required at specific areas of concern to further delineate areas requiring remediation?

Step 3 – Identify Information Inputs to the Decision or Goal of the Study

The inputs required to make the above decisions are listed below:

- Comparison of previous Phase 2ESA investigation analytical results against the new guidelines to identify which areas of concern may or may not require further investigation;
- The identification of areas of concern that were previously inaccessible;
- Results of soil and/ or groundwater investigations at each area of concern;
- Proposed land use;
- Appropriate NSW contamination guidelines.

Step 4 - Define the Study Boundaries

Spatial boundaries – The study boundaries have been defined as the spatial boundary of the smelter, as shown in Figure 1.

Vertical boundaries – The study boundary extends a depth of 3m in soil, as this is the depth to which the new guidelines apply. Where groundwater investigations are required, the study boundary extends to beneath the groundwater table.

Temporal boundaries – The temporal boundary is limited to the data collected during the investigation works.

Constraints within the study boundaries – Investigations within the study boundary may be limited by accessibility issues, including the location of underground services and overhead services and the height of buildings and awnings.

Step 5 – Develop a Decision Rule

The decision rules for this investigation are as follows:

- If it is determined that the data generated through this investigation is reliable for use in producing a conceptual site model and delineating the lateral and vertical extent of soil and/ or groundwater contamination at each area of concern, then this information will be used in remediation planning;
- If it is determined that the data generated through this investigation is not suitable, comprehensive or reliable for use in producing a conceptual site model and delineating the lateral and vertical extent of soil and/ or groundwater contamination at each area of concern, then further investigations may be recommended to further reduce uncertainties for remediation planning.

Step 6 - Specify Performance or Acceptance Criteria that the Data need to Achieve

Acceptable limits on decision error have been developed based on the Data Quality Indicators (DQIs) of precision, accuracy, representativeness, comparability and completeness. The DQIs for this investigation are outlined below.

The potential for significant decision errors were minimised by:

- Completion of a quality assurance/ quality control (QA/QC) assessed of the investigation data to assess if the data satisfies the DQIs;
- Assessment of whether appropriate sampling and analytical densities were completed for the purposes of the investigation; and
- Ensuring that the criteria set for the investigation were appropriate for the proposed use of the Site.

Step 7 – Optimisation of the Design for Collection of Data

The collection of data will be optimised via the use of targeted and systematic sampling of soil and groundwater at the site. The data collection design (or sampling plan) is outlined in Section 5.

5 Sampling Plan

The sampling plan for this Stage 2 Phase 2 ESA is outlined below and the following steps have been undertaken:

- Step 1: Identify areas of concern from the Phase 2 ESA requiring additional investigations. Assessment of the Phase 2 ESA results against the updated soil and groundwater criteria provided in NEPM (2013) is required as part of this step (Section 5.1);
- Step 2: Complete a data gap analysis to identify potential areas of concern that were not assessed in the Phase 2 ESA as the smelter was operational at the time of that investigation (Section 5.2);
- Step 3: The areas of concern identified in the data gap analysis generally comprise buildings used in smelter operations. Complete a walkover of these buildings to assess potential for contamination to soil and/ or groundwater (Section 5.3).
- Step 4: Based on the results of Steps 1, 2 and 3, identify areas of concern requiring assessment in this Stage 2 Phase 2 ESA including any limitations for sampling.
- Step 5: For each area of concern, stipulate the following:
 - Media to be sampled (soil, groundwater or both);
 - Type of sampling (judgemental, grid-based or combination of both)
 - o Number of samples to be collected;
 - Targeted depth of sampling;
 - Chemicals for laboratory analysis;

5.1 Assessment of Phase 2 ESA Results against NEPM (2013)

An assessment of areas of concern against relevant guidelines was completed as part of the Phase 2 ESA. Table 8.3 of ENVIRON (2012) detailed identified soil and groundwater contamination. As updated guidelines were introduced in 2013, the identified soil and groundwater contamination have been re-assessed against NEPM (2013) in Table 5.1.

In addition, ENVIRON completed a Health Risk Assessment for fluoride in 2013, which developed a preliminary screening criteria for fluoride in soil for a range of landuses, including a preliminary screening criteria of 17,000mg/kg for commercial/ industrial landuse. Fluoride contamination in soil has been re-assessed using the preliminary screening criterion of 17,000mg/kg.

Table 5.1 does not include a re-assessment of groundwater contamination, as the guidelines for groundwater under NEPM (2013) have not changed from NEPM (1999). Note that Table 5.1 does not include areas of concern identified in the Phase 2 ESA that have been assessed further separately (see Section 2).

Table 5.1: Re-assessment of Identified Contamination from the Phase 2 ESA **Area of Concern** No. **Previously Identified Soil Contamination** Soil Contamination Identified under NEPM **Additional Investigations** (2013)Required? Benzo(a)pyrene (16-29mg/kg at 0-0.4m Yes, for fluoride and PAHs 2 Anode Waste One of three soil samples has Pile depth) and Total PAHs (165-458mg/kg) in benzo(a)pyrene in shallow fill that exceeds in shallow soil. shallow fill material beneath the Anode NEPM (2013) Toxicity Equivalent Factor Waste Pile above guidelines of 5mg/kg (TEQ) of 40mg/kg for commercial/industrial and 100mg/kg respectively. landuse. Total PAHs are less than NEPM (2013) HIL D criterion of 4000mg/kg. Fluoride concentrations in fill samples range between 1010mg/kg and Two of three soil samples have fluoride in 47100mg/kg to a depth of 0.6m. shallow fill that exceeds the preliminary screening criteria of 17,000mg/kg. Refuelling Area The volatile TPH fraction C6-C10 is below No. as TPH and fluoride TPH concentrations of 3360mg/kg at 0.15-0.3m depth in shallow soil elevated the laboratory practical quantitation limit concentrations do not above the adopted guideline of (PQL) then therefore below NEPM (2013) exceed revised criteria. 1000mg/kg. soil health screening levels for vapour Fluoride concentrations in fill samples intrusion for commercial/industrial landuse. range between 90mg/kg and 3240mg/kg Heavy fraction TPH >C10-C16 soil health in soils between 0m and 0.3m depth. screening levels for commercial/industrial Fluoride concentrations in underlying landuse are non limiting (NL), indicating no natural soils of 60mg/kg to 830mg/kg. potential vapour intrusion issues with the underground storage tanks. The heavy fraction TPH C15-C28 and C29-C36 concentrations are below Management Limits concentrations. The fluoride concentrations are below the preliminary screening criteria of

No.	Area of Concern	Previously Identified Soil Contamination	Soil Contamination Identified under NEPM (2013)	Additional Investigations Required?
			17,000mg/kg.	
4	Diesel Spray Area	Elevated TPH concentrations ranging between 2020mg/kg and 3760mg/kg above the adopted guideline of 1000mg/kg. Elevated BaP concentrations ranging between 19.2mg/kg and 101mg/kg and Total PAH concentrations of 205mg/kg and 963mg/kg in shallow fill material above the site guidelines of 5mg/kg and 100mg/kg respectively.	The volatile TPH fraction C6-C10 is below the laboratory practical quantitation limit (PQL) then therefore below NEPM (2013) soil health screening levels for vapour intrusion for commercial/ industrial landuse. Heavy fraction TPH >C10-C16 soil health screening levels for commercial/ industrial landuse are non limiting (NL), indicating no potential vapour intrusion issues with the diesel spray area. The heavy fraction TPH C15-C28 and C29-C36 concentrations are below Management Limits concentrations. BaP concentrations in shallow soil exceed the NEPM (2013) TEQ of 40mg/kg for commercial/ industrial landuse. Total PAHs are less than NEPM (2013) HIL D criterion of 4000mg/kg.	Yes, for PAHs in shallow soil.
5	Drainage Lines	Elevated BaP concentrations ranging between 15.1mg/kg and 85.6mg/kg and Total PAH concentrations ranging between 123mg/kg and 996mg/kg in sediment in drainage lines adjacent to Anode Waste Pile above the site	BaP concentrations in sediment in drainage lines associated with the Anode Waste Pile and the Alcan Mound exceed the NEPM (2013) TEQ of 40mg/kg for commercial/industrial landuse. Total PAHs are less than	No, based on current sampling results all sediments in drain near the Anode Waste Pile and Alcan Mound are assumed to contain elevated

Table 5.1: Re-assessment of Identified Contamination from the Phase 2 ESA

No.	Area of Concern	Previously Identified Soil Contamination	Soil Contamination Identified under NEPM (2013)	Additional Investigations Required?
		guidelines. Fluoride concentrations in sediment ranging between 520mg/kg and 7350mg/kg.	NEPM (2013) HIL D criterion of 4000mg/kg. Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	concentrations of PAHs and require remediation.
6	East Surge Pond	Elevated BaP ranging between 16mg/kg and 21.7mg/kg and Total PAH concentration ranging between 171mg/kg and 475mg/kg in sediments above the site guidelines. Fluoride concentrations in sediment ranging between 210mg/kg and 3010mg/kg. Fluoride concentrations in natural soil of 210mg/kg.	BaP concentrations in one sediment sample exceed the NEPM (2013) TEQ of 40mg/kg for commercial/ industrial landuse. Total PAHs are less than NEPM (2013) HIL D criterion of 4000mg/kg. Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	Yes, for PAHs in dam sediments.
7	Northern Dams 1 and 2	Elevated concentrations of BaP (7.4mg/kg) and PAH (122mg/kg) in one composite sample. Average concentrations indicate acceptable concentrations present. Fluoride concentrations in sediment ranging between 860mg/kg and 1880mg/kg. Fluoride concentrations in natural soils ranging between 340mg/kg and 7350mg/kg.	BaP and Total PAH concentrations are below NEPM (2013) HIL D guidelines. Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	No, PAH and fluoride concentrations do not exceed revised criteria.

Table 5.1: Re-assessment of Identified Contamination from the Phase 2 ESA

No.	Area of Concern	Previously Identified Soil Contamination	Soil Contamination Identified under NEPM (2013)	Additional Investigations Required?
8	Carbon Plant	Elevated concentrations of BaP (33.6mg/kg) and Total PAHs (387mg/kg) in shallow fill material adjacent to the green mix plant above the site guidelines. Fluoride concentrations in shallow fill ranging between 150mg/kg and 7740mg/kg. Fluoride concentrations in natural soil ranging between 60mg/kg and 650mg/kg.	BaP concentration in one shallow soil sample at the western end of the Carbon Plant exceeds the NEPM (2013) TEQ of 40mg/kg for commercial/ industrial landuse. Total PAHs are less than NEPM (2013) HIL D criterion of 4000mg/kg. Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	Yes, for PAHs in shallow accessible soil in garden beds and grassed areas at the western end of the Carbon Plant. Soils below concrete/ bitumen are not impacted.
9	Cathode Bar Washdown Area	Elevated concentrations of BaP (8.9mg/kg) and Total PAHs (149mg/kg) in shallow fill material above the site guidelines. Fluoride concentrations in shallow fill of 10600mg/kg. Fluoride concentrations in underlying topsoil of 190mg/kg.	BaP and Total PAH concentrations are below NEPM (2013) HIL D guidelines. Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	No, as PAH and fluoride concentrations are below revised criteria.
10	Flammable Liquids Store	Fluoride concentrations in shallow fill ranging between 700mg/kg and 16200mg/kg from 0.1m to 0.4m depth.	Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	No, as fluoride concentrations are below revised criteria.
11	Washdown Bay	Fluoride concentrations in shallow fill ranging between 960mg/kg and 39000mg/kg from 0m to 0.8m depth.	Fluoride concentrations in one shallow soil sample exceed the preliminary screening criteria of 17,000mg/kg.	Yes, for fluoride in shallow soil.

Table 5.1: Re-assessment of Identified Contamination from the Phase 2 ESA

No.	Area of Concern	Previously Identified Soil Contamination	Soil Contamination Identified under NEPM (2013)	Additional Investigations Required?
12	Pot Lines 2 and 3	Fluoride concentrations in shallow fill ranging from 13400mg/kg and 41900mg/kg from 0m to 0.05m depth.	Fluoride concentrations in three of four shallow soil samples exceed the preliminary screening criteria of 17,000mg/kg.	Yes, for fluoride in shallow soil.
15	West Surge Pond	Fluoride concentrations in sediment ranging from 5850mg/kg to 38500mg/kg.	Fluoride concentrations in one of two sediment samples exceed the preliminary screening criteria of 17,000mg/kg.	Yes, for fluoride in sediment.
18	Pot Rebuild Area	None identified. Fluoride concentrations of 190mg/kg in shallow fill.	Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	No, fluoride concentrations are below revised criteria.
19	Clay Borrow Pit	None identified. Fluoride concentrations ranging between 190mg/kg and 2120mg/kg in shallow fill.	Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	No, fluoride concentrations are below revised criteria.
21	Irrigation Area	Elevated BaP concentration of 1.2mg/kg in shallow soil above the residential guideline of 1mg/kg. Elevated zinc concentration of 26mg/kg in shallow soil above the phytotoxicity-based guideline (EIL) of 200mg/kg. Fluoride concentrations in surface soils ranging between 200mg/kg and 510mg/kg.	BaP and Total PAH concentrations are below NEPM (2013) HIL D guidelines. Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	No, fluoride and PAH concentrations are below revised criteria.

Hydro Aluminium Kurri Kurri Pty
Ltd

June 2014

Hydro Aluminium Kurri Kurri Smelter, Sampling Analysis and Quality Plan
Page 16

The re-assessment completed in Table 5.1 indicates that soil contamination issues relating to PAHs and fluoride are no longer an issue at Northern Dams 1 and 2, Cathode Bar Washdown Area, Flammable Liquids Store, Pot Rebuild Area, the Clay Borrow Pit and the Irrigation Area. No further investigations shall be undertaken at these areas.

5.2 Data Gap Analysis

At the time of the Phase 2 ESA, some areas of the site were not accessible for investigation as the smelter was in operation. Now that the smelter is in a care and maintenance mode, previously inaccessible areas of the site may require assessment as part of the Stage 2 Phase 2 ESA. Review of the smelter operations has identified the following potential areas of concern that require assessment:

- The Carbon Plant, including the Greenmix Building, the Rodding Building, Ring Furnace Building and Green & Baked Anode Storage Building;
- · Casting Plant Building;
- Ring Furnace Scrubber;
- Metal Storage Pads;
- Maintenance Workshop and Boilermakers shop;
- Petroleum Coke Storage;
- Potroom Services Workshop;
- Potline Raw Material Storage;
- Bath Crushing Plant;
- Dross Storage Building;
- Butt Cleaning Building;
- Casting Alloy Storage Shed;
- Anode Storage Building;
- Playing Fields, area east of playing fields and area east of Clay Borrow Pit (filled areas);
- Areas of accessible soil (i.e. garden beds).

A site visit was completed on 7 May 2014 to assess the condition of the buildings identified above, including the floor material, condition of the floor, location of pits, sumps or other underground structures and an assessment of the potential for soil and/ or groundwater contamination associated with each building. The results of the site visit are documented in Table 5.2.

Table 5.2: Assessment of Previously Inaccessible Buildings at the Smelter

Building No.	Building Name	Use	Floor Material	Condition of Floor Material	Potential for Soil or Groundwater Contamination
-	Metal Storage Pads (South and East)	Storage of aluminium billet	Bitumen	Good	Low
73C	Casting Maintenance Storage Sheds	Storage of materials used in aluminium casting	Concrete	Fair, one larger crack in eastern shed	Low
74C	Casting Alloy Storage Sheds	Storage of metals (iron, copper, chrome) used in aluminium casting	Concrete	Fair, small cracks	Low
3A/B/C	Potroom Buildings	Smelting of aluminium	Concrete	Fair	Low
3AN/BN/CN, 3AS/BS/CS/BC/CC, 29A/C, 65C, 68C	Substations	Substation buildings	Gravel for earthing	Fair	Medium, oils containing PCBs have been replaced but remnant oil likely
43BS	Dry Scrubber Plant	Scrub aluminium gases from pot lines	Bitumen	Poor	High, alumina dust (fluoride) observed settled on ground surface
95A	Washdown Bay	Wash down and parking of pot line vehicles	Bitumen	Fair	Low, as built in last 5 years
40A	Cathode Rodding Building	Storage of cathodes	Thick concrete	Good	Low

Table 5.2: Assessment of Previously Inaccessible Buildings at the Smelter

Building No.	Building Name	Use	Floor Material	Condition of Floor Material	Potential for Soil or Groundwater Contamination
44B	Pot Line Maintenance	Oil storage	Thick Concrete	Good	Low
4A/B/C	Cast House	Casting aluminium metal	Thick concrete	Good	Low
64C	Mobile Vehicle Workshop	Vehicle maintenance	Concrete	Good	Medium due to mechanics pit with sump
26A/B/C	Engineering Building and Workshops	Maintenance workshop for fitters, boilermakers and components repair	Concrete	Good	Low
46A	Carbon Plant Maintenance Workshop	Maintenance of carbon plant equipment	Thick concrete	Good	Low
5A	Greenmix Plant	Forming anodes, includes delivery of liquid pitch, agitation and pouring into moulds	Concrete	Good	High for PAHs in accessible soil otherwise low
8A/B	Rodding Building	Adding rods to anodes	Thick concrete	Good	Medium due to below ground butt crushing plant, oily residue on floor
8C	Baked Anode	Storage of baked	Concrete	Good	Low

Table 5.2: Assessment of Previously Inaccessible Buildings at the Smelter

Building No.	Building Name	Use	Floor Material	Condition of Floor Material	Potential for Soil or Groundwater Contamination	
	Storage	anodes				
7A/B/C	Carbon Plant	Baking anodes	Concrete	Good	Low	
60C	Ring Furnace Scrubber	Dry scrubbing of gases from the ring furnace, scrubber waste bunker	Concrete	Good	High for fluoride and PAHs in accessible soil	
65C	Butt Cleaning Building	Cleaning anode butts prior to crushing	Concrete	Not seen, currently used for anode storage	Low	
1A/B/C	Switchyard	To step down high voltage electricity	Concrete	Good	Low	

5.3 Potential Areas of Environmental Concern

Table 5.3 outlines the Potential Areas of Environmental Concern (PAEC) identified at the site during the previous Phase 2 ESA and from the data gap analysis. Table 5.3 includes the area of each PAEC, the buildings, type of ground surface and limitations for sampling.

It is noted that the main limitation for sampling is overhead and underground services. The location of these services may mean that planned sampling locations have to be moved during the field investigations.

Table 5.3: Potential Areas of Environmental Concern Requiring Investigation

No.	PAEC	Area (m ²)	Buildings	Ground Surface	Limitations for Sampling
2	Anode Waste Pile	6,400	None	Gravel	The ground surface beneath the Anode Waste Pile cannot be sampled until the pile is removed.
3	Refuelling Area	600	Low roofed canopy structure.	Bitumen. There is a garden bed immediately to the west.	The UST and associated infrastructure remains in the ground. There is a low roofed canopy over the refuelling area that will prevent the drill rig from raising its mast.
4	Diesel Spray Area	200	Low roofed canopy	Fill soils and bitumen	There is a low roofed canopy structure over the area that will prevent the drill rig from raising its mast. There are services within the vicinity that were an issue in the Phase 2 ESA.
6	East Surge Pond	4,400	None	Sediment	None
8	Carbon Plant (western end only)	96,000	Ring Furnace Building, Rodding Building, Green & Baked Anode Storage Building, Greenmix Building, Workshops and Control Rooms	Concrete/ bitumen	Underground and overhead services, sampling will be limited to accessible soils only

June 2014

Table 5.3: Potential Areas of Environmental Concern Requiring Investigation

No.	PAEC	Area (m²)	Buildings	Ground Surface	Limitations for Sampling
11	Washdown Bay	900	None	Concrete	Underground services
12	Pot Lines 1, 2 and 3	180,950	Three pot lines	Bitumen and fill soils	Sampling within the pot lines is not required. Sampling will be limited to accessible soil between the pot lines
15	West Surge Pond	4,875	None	Sediment	None
25	Dry Scrubbers (6 separate locations between pot lines)	3,450 per location	Overhead infrastructure	Mix of bitumen and grass	Underground/ overhead services
26	Ring Furnace Scrubber	6,550	Overhead infrastructure	Mix of concrete and grass	Underground/ overhead services
27	Substations	Approx. 50 per substation	Each generally includes a building	Gravel	Underground/ overhead services
28	Playing Fields (two adjacent)	8,100 per oval	None	Grass/ fill soils	None
29	Area East of Playing Fields	9,900	None	Grass/ fill soils	None
30	Area east of Clay Borrow Pit	31,900	None	Grass/ fill soils	None
31	Storage Area west of	44,000	None	Mix of compacted fill and	Underground/ overhead services

Table 5.3: Potential Areas of Environmental Concern Requiring Investigation

N	p. PAEC	Area (m²)	Buildings	Ground Surface	Limitations for Sampling
	Pot Lines			hardstand	
32	Garden beds	NA	None	Fill soils	Underground/ overhead services

5.4 Sampling Program

Table 5.3 outlines the Potential Areas of Environmental Concern (PAEC) identified at the site during the previous Phase 2 ESA and from the data gap analysis. The location of each PAEC and planned sampling locations are shown in Figures 2 to 12.

It is noted that aside from the seven new wells planned in Table 5.3, a round of groundwater sampling will be completed on the existing wells installed during the Phase 2 ESA.

Tab	le 5.4: Sampling	Program fo	r PAECs				
No.	PAEC	Area (m²)	Media to be Sampled	Type of Sampling	No. of Sample Locations	Targeted Depth/ Sample Depths	Laboratory Analysis
2	Anode Waste Pile	6,400	Soil	Stratified sampling around outside of stockpile for delineation of contamination	8	Surface soils to 0.5m, samples collected from 0-0.1m and 0.3-0.4m.	Fluoride, PAHs
			Groundwater	Judgemental down gradient sampling	2 wells		PAHs
3	Refuelling Area	600	Groundwater	Down gradient sampling	3 wells		TPH, PAHs
4	Diesel Spray Area	200	Soil	Stratified sampling to delineate contamination	8	Soils to 1m, samples collected from 0-0.1m, 0.4-0.5m, 0.8-0.9m	PAHs
6	East Surge Pond	4,400	Sediment	Due to sampling difficultion sampling of sediments from excavated and stockpiled	om the East Surge	•	
8	Carbon Plant (western end only)	96,000	Accessible soil	Grid-based sampling of accessible soils to delineate contamination	15	Surface soils to 0.5m, samples collected from 0-0.1m and 0.3- 0.4m	PAHs
			Groundwater	Sampling within former rodding building	3 wells		PAHs

Tab	le 5.4: Sampling	Program for	PAECs				
No.	PAEC	Area (m²)	Media to be Sampled	Type of Sampling	No. of Sample Locations	Targeted Depth/ Sample Depths	Laboratory Analysis
11	Washdown Bay	900	Soil	Grid-based sampling to assess contamination	4	Surface soils to 0.5m, samples collected from 0-0.1m and 0.3- 0.4m	Fluoride
12	Pot Lines 1, 2 and 3	180,950	Accessible soil	Stratified sampling where accessible to delineate contamination	10	Surface soils to 0.5m, samples collected from surface, 0.1m, 0.15m and 0.2m	Fluoride
15	West Surge Pond	4,875	Sediment	Due to sampling difficultion sampling of sediments from excavated and stockpiled	om the West Surge	•	
25	Dry Scrubbers (6 separate locations between pot lines)	3,450 per location	Soil	Judgemental sampling to assess contamination	24, 4 per location	Surface soils to 0.5m, samples collected from 0-0.1m, 0.1-0.2m and 0.3-0.4m	Fluoride
26	Ring Furnace Scrubber	6,550	Soil	Grid-based sampling to assess contamination	10	Surface soils to 0.5m, samples collected from 0-0.1m and 0.3- 0.4m	Fluoride, PAHs
27	Substations	50 per substation	Soil	Due to health and safety assessment of each subs	•	•	NVIRON recommends

No.	PAEC	Area (m²)	Media to be Sampled	Type of Sampling	No. of Sample Locations	Targeted Depth/ Sample Depths	Laboratory Analysis
28	Playing Fields (two adjacent)	8,100 per oval	Soil	Grid-based sampling to assess contamination	10 locations per field	Full depth of fill, samples to be collected within fill	Heavy Metals, PTH, BTEX, PAHs, fluoride
29	Area East of Playing Fields	9,900	Soil	Grid-based sampling to assess contamination	10	Full depth of fill, samples to be collected within fill	Heavy Metals, PTH, BTEX, PAHs, fluoride
30	Area east of Clay Borrow Pit	28,500	Soil	Grid-based sampling to assess contamination	10	Full depth of fill, samples to be collected within fill	Heavy Metals, PTH, BTEX, PAHs, fluoride
31	Storage Area west of Pot Lines	44,000	Soil	Grid-based sampling to assess contamination	14	Surface soils to 0.5m, samples collected from surface, 0.1m, 0.15m and 0.2m and 0.4m	Heavy Metals, PTH, BTEX, PAHs, fluoride
32	Garden beds	NA	Soil	Grid-based sampling to assess contamination	1 per garden bed not included in other PAECs, estimate of 20	Surface soils to 0.5m, samples collected from 0-0.1m and 0.3- 0.4m	Fluoride, PAHs

5.5 Sampling

5.5.1 Soil Sampling Methodology

The fieldwork methodology for soil sampling is outlined in Table 5.5.

Table 5.5: Soil Sampling Methodology				
Activity	Details			
Subsurface clearance	A Dial Before You Dig underground services check will be completed prior to fieldwork. Sample locations will be marked out and cleared by a suitably qualified and experienced locator prior to the commencement of subsurface works. Sampling locations that need to be moved due to underground or overhead services will be relocated at the time of the subsurface clearance.			
Concrete coring	Coring of surface concrete will be completed at sampling locations requiring this work prior to the commencement of fieldwork.			
Drilling and hand augering	The majority of the sampling locations will be drilled using pushtubes to the required depth of the investigation. Hollow augers will be used where possible to complete the boreholes that will be completed with groundwater monitoring wells. Where access with a drill rig is restricted or only surface samples are required, soil samples will be collected by hand auger.			
Test Pitting	A back hoe will be used to test pit the playing fields. Test pits will be extended through fill material into natural soils. Test pits will be backfilled and track rolled on completion.			
Soil logging	Soil logging will be undertaken by a suitably qualified and experienced environmental scientist from ENVIRON. It is intended that the environmental scientist from ENVIRON will be the same person who completed fieldwork for the Phase 2 ESA. The approximate location of sampling locations will be recorded by measuring the distance from known locations e.g. buildings or fences.			

Activity	Details		
Soil sampling	Soil samples will be collected from suitable locations at each borehole. Where the mechanism of contamination is from the surface of the site into the soil, soil samples will be collected from the surface (0.0-0.1m) and from a depth around 0.5m. Where the mechanism of contamination is associated with an underground structure such as a UST, soil samples will be collected from the depth at which contamination is likely to be present. Soil samples will be collected using dedicated disposable gloves into laboratory-supplied glass jars. A Photoionisation Detector (PID) will be used to screen soil samples for the presence of volatile contaminants in areas where volatile contaminants are of concern. Sample material will be placed into a plastic bag and sealed for soil screening.		
Soil screening			
Decontamination	Reusable sampling equipment (if any) will be decontaminated by washing with Decon90 and rinsing with potable water between samples.		
Disposal of soil	Spoil will be returned to the boreholes.		

5.5.2 Groundwater Sampling Methodology

The fieldwork methodology for groundwater sampling is outlined in Table 5.6.

Activity	Details
Well installation	The groundwater wells will be extended from the boreholes to approximately 1m below the groundwater table using solid flight augers. The wells will be constructed using machine slotted 50mm PVC screen from the base of the well to 0.5m past the intercepted groundwater depth and screw threaded 50mm PVS casing will be extended to the surface. The well annulus will be backfilled with 2mm graded sand to approximately 1m past the top of the screen, followed by bentonite backfill to the surface. A lockable steel monument will be concreted in over the well access.
Well gauging	Monitoring wells will be gauged using an oil/water interface probe. The interface probe will be decontaminated between each measurement.
Well purging	Groundwater purging and sampling will be completed approximately one week following well installation. Water will be purged from each monitoring well using peristaltic sampling equipment until the groundwater parameters have stabilised. Groundwater parameters including pH, temperature, dissolved oxygen, redox potential and electrical conductivity will be recorded using a water quality meter during purging.
Sampling method	Following stabilization of groundwater parameters, sampling will be completed using peristaltic techniques. Groundwater samples will be collected into laboratory-supplied bottles that are preserved as required.
Decontamination	Dedicated tubing will be used per well. Decontamination of re-useable sampling equipment will be completed using Decon90 and rinsing with potable water.
Disposal of water	Groundwater collected during purging and sampling will be disposed of to land down gradient of the well following sampling.

June 2014

5.5.3 Sample Handling and Preservation

The following sample handling and preservation procedures will be used:

- The use of a new pair of disposable nitrile gloves to handle each soil and groundwater sample;
- Soil samples are to be placed immediately into laboratory-supplied acid-rinsed glass jars;
- Groundwater samples are to be placed immediately into laboratory-supplied appropriately-preserved bottles;
- Sample jars and bottles are to be fill so that no headspace remains;
- Sample jars and bottles are to be stored in chilled, insulated containers with ice for transportation to the laboratory;
- Sample numbers, depths, preservation and analytical requirements are to be recorded on chain of custody documents;
- Samples jars and bottles are to be transported to the laboratory under chain of custody conditions.

6 Data Quality Indicators

The project Data Quality Indicators (DQIs) have been established to set acceptance limits on field and laboratory data collected as part of this investigation. Field and laboratory procedures acceptance limits are set at different levels for different projects and by different laboratories. Non-compliance with acceptable limits are to be documented and discussed in the Stage 2 Phase 2 ESA report. The DQIs are presented in Table 6.1.

Table 6.1: Data Quality Indicators				
DQI	Field	Laboratory	Acceptability Limits	
Completeness	All critical locations sampled, All samples collected Experienced sampler Documentation correct	All critical samples analysed and all analytes analysed according to Standard Operating Procedures (SOPs) Appropriate Practical Quantitation Limits (PQLs) Sample documentation complete Sample holding times complied with	As per NEPM (2013)	
Comparability	Experienced sampler In the event of multiple sampling events: Same types of samples collected Same sampling methodologies used Climatic conditions	Same analytical methods used Same PQLs Same units Same primary and secondary laboratories	As per NEPM (2013)	
Represe ntativene ss	Appropriate media sampled Relevant media sampled	All samples analysed according to SOPs		
Precision	Collection of duplicate samples Sampling methodologies appropriate and complied with	Analysis of: Blind duplicate samples at rate of 1 in 10 samples Split duplicate samples at rate of 1 in 20 samples Laboratory duplicate samples	RPD of 30 to 50% RPD of 30 to 50% RPD of 30 to 50%	
Accuracy	Sampling methodologies appropriate and complied with.	Analysis of: Method blanks Matrix spikes Surrogate spikes Laboratory control samples Reagent blanks Reference material	Non-detect 70 to 130% 70-130% 70 to 130%	

7 Basis for Assessment Criteria

7.1 Soil

The criteria proposed for the assessment of soil contamination were sourced from the following references:

 National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM).

The variation to the National Environmental Protection (Assessment of Site Contamination) Measure (NEPM 2013) was approved on 19 June 2013 by the NSWEPA under the *Contaminated Land Management Act 1997*. NEPM (2013) provide revised health-based soil investigation levels (HILs) and ecological-based investigation levels (EILs) for various land uses. The NEPM 2013 also introduces health-based and ecological screening levels and management limits for petroleum hydrocarbons (HSLs and ESLs). The levels have been derived from recent assessments that more accurately define the exposure mechanisms and risks from sites contaminated with petroleum hydrocarbons.

The guidelines adopted for the site from the NEPM are as follows:

- HIL D Health investigation level for commercial/industrial such as shops, offices, factories and industrial sites. The HILs are applicable for assessing human health risk via all relevant pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of 3 m below the surface for industrial use.
- HSLs for commercial/industrial use Health screening levels for soil vapour intrusion from petroleum hydrocarbons are guidelines that prevent accumulation of vapours at concentrations that may represent a health risk. The HSLs are derived for various depths and are for the same generic land uses as for the HILs. The guidelines are relevant were soils are beneath building or structures such as confined spaces;
- EIL for commercial/ industrial use ecological investigations levels applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physicochemical properties and generally apply to the top 2 m of soil.
- ESLs for commercial/ industrial use ecological screening levels developed for selected petroleum hydrocarbon compounds and fractions and are applicable for assessing risk to terrestrial ecosystems. These are also generally applicable to the top 2m of soil.
- Management Limits where concentrations above these limits may indicate poor aesthetics, high odour and potentially explosive vapour. Management limits are to be applied after consideration of relevant ESLs and HSLs.

The applicable assessment criteria for heavy metals and PAHs in soil are presented in **Table 7.1**:

Table 7.1: Soil Assessment Criteria (mg/kg) – Health and Ecological Investigation Levels				
	HIL D	EIL		
Arsenic	3000	160		
Cadmium	900	-		
Chromium (VI)	3600	320 (CR III, 1% clay)		
Copper	240 000	130		
Lead	1500	1800		
Nickel	6000	40		
Zinc	400 000	380		
Mercury (inorganic)	730	-		
Fluoride	Ref 7. 5	Ref Table 5		
Cyanide (free)	1500	-		
Carcinogenic PAHs (as BaP TEQ)	40	-		
Total PAHs	4000	-		
DDT+DDE+DDD	3600			
Aldrin +dieldrin	45			
Chlordane	530			
Endosulfan	2000			
Endrin	100			
Heptachlor	50			
Methoxychlor	2500			
Chlorpyrifos	2000			
	+			

¹ EILs represent the most conservative value possible as the lowest value for added contaminant limit (ACL) was used and the ambient background concentration (ABC) was not added, with the exception of zinc and copper, where the EIL was calculated by adding the ACL with the estimated ABC using the NEPM (2013) EIL Calculation Spreadsheet.

The applicable assessment criteria for petroleum hydrocarbons in soil are presented in **Table 7.2** and **Table 7.3**:

Table 7.2: Soil Assessment Criteria for Vapour Intrusion - HSL D (mg/kg) - Sand				
	0 to <1m	1m to <2m	2m to <4m	4m+
Toluene	NL	NL	NL	NL
Ethylbenzene	NL	NL	NL	NL
Xylenes	230	NL	NL	NL
Naphthalene	NL	NL	NL	NL
Benzene	3	3	3	3
F1(4)	260	370	630	NL
F2(5)	NL	NL	NL	NL

¹ The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the

June 2014 Page 36

derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

- 2 (For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit>50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.
- 3 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.
- 4 To obtain F2 subtract naphthalene from the >C10-C16 fraction.

TPH fraction	Soil texture	ESLs (mg/kg dry soil)	Management Limits ¹ (mg/kg dry soil)
		Commercial and Industrial	Commercial and Industrial
F1 C6- C10	Fine	215*	800
F2 >C10-C16	Fine	170*	1000
F3 >C16-C34	Fine	2500	5000
F4 >C34-C40	Fine	6600	10 000
Benzene	Fine	95	-
Toluene	Fine	135	-
Ethylbenzene	Fine	185	-
Xylenes	Fine	95	-
Benzo(a)pyrene	Fine	0.7	-

¹ Management limits are applied after consideration of relevant ESLs and HSLs.

The HSLs for asbestos are applicable for assessing human health risk via the exposure pathway of inhalation of airborne asbestos and are presented in **Table 7.4**. The HSLs are generic to all soil types.

Table 7.4. Health Screening Levels for Asbestos Contamination in Soil (w/w)				
Form of asbestos	Residential	Residential	Recreational	
	\mathbf{A}^{1}	B ²	C ³	Industrial D⁴
Bonded ACM	0.01%	0.04%	0.02%	0.05%
FA and AF ¹ (friable asbestos)	0.001%			
All forms of asbestos	No visible asbestos for surface soil			

^{1.} The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.

NEPM (2013) do not provide criteria for fluoride in soils in Australia. Therefore, ENVIRON (2013) conducted a preliminary level Human Health Risk Assessment (HRA) specific to fluoride in order to derive a specific preliminary screening level for fluoride for the Hydro

² Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

³ ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

⁴ To obtain F1, subtract the sum of BTEX from C6-C10 fraction and subtract naphthalene from >C10-C16 to obtain F2.

Aluminium Kurri Kurri Smelter . The screening levels are protective of the range of human receptors and are provided in **Table 7.5**:

Table 7.5: Site Specific Soil Assessment Guidelines for Fluoride (mg/kg)		
Preliminary screening levels		
Land Use Preliminary screening level		
Commercial/ industrial - soil F 17000mg/kg		

Consistent with the guidance provided in the NEPM, the data was assessed against the above adopted site guidelines by:

- Comparing individual concentrations against the relevant guidelines and if discrete samples are in excess of the relevant guideline then;
- Comparing the 95% upper confidence limit of mean against the relevant guideline also ensuring that:
 - the standard deviation of the results is less than 50% of the relevant investigation or screening level, and
 - o no single value exceed 250% of the relevant investigation or screening level.

8 Reporting Requirements

At the completion of the Stage 2 Phase 2 ESA, a report shall be provided that includes the following information, in accordance with NSW OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites:

- Executive summary;
- Scope of work;
- Site identification;
- Summary of previous investigations, including a summary of the site history, site condition, surrounding environment, geology and hydrogeology;
- A summary of this SAQP and sampling methodologies;
- Field and laboratory QA/QC;
- QA/QC data evaluation;
- Basis for assessment criteria;
- Results;
- Site characterisation, including updated conceptual site model;
- · Requirements for remediation;
- · Conclusion and recommendations.

The Stage 2 Phase 2 ESA report will comply with the requirements of NSW DEC (2006) Contaminated Sites: Guidelines for the NSW Site Auditor Scheme.

Hydro Aluminium Kurri Kurri Pty
Ltd
June 2014

Hydro Aluminium Kurri Kurri Smelter, Sampling Analysis and Quality Plan
Page 39

9 References

- ENVIRON (March 2012) 'Sampling, Analysis and Quality Plan, Kurri Kurri Aluminium Smelter'
- ENVIRON (1 November 2012) 'Phase 2 Environmental Site Assessment, Kurri Kurri Aluminium Smelter
- ENVIRON (2 April 2013) 'Preliminary Screening Level, Human Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford'
- NEPM (2013) 'Schedule B1: Guideline on Investigations Levels for Soil and Groundwater'

10 Limitations

ENVIRON Australia prepared this report in accordance with the scope of work as outlined in our proposal to Hydro Aluminium Kurri Kurri Pty Ltd dated June 2014 and in accordance with our understanding and interpretation of current regulatory standards.

A representative program of sampling and laboratory analyses was undertaken as part of this investigation, based on past and present known uses of the site. While every care has been taken, concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. We cannot therefore preclude the presence of materials that may be hazardous.

Site conditions may change over time. This report is based on conditions encountered at the site at the time of the report and ENVIRON disclaims responsibility for any changes that may have occurred after this time.

The conclusions presented in this report represent ENVIRON's professional judgment based on information made available during the course of this assignment and are true and correct to the best of ENVIRON's knowledge as at the date of the assessment.

ENVIRON did not independently verify all of the written or oral information provided to ENVIRON during the course of this investigation. While ENVIRON has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to ENVIRON was itself complete and accurate.


This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.

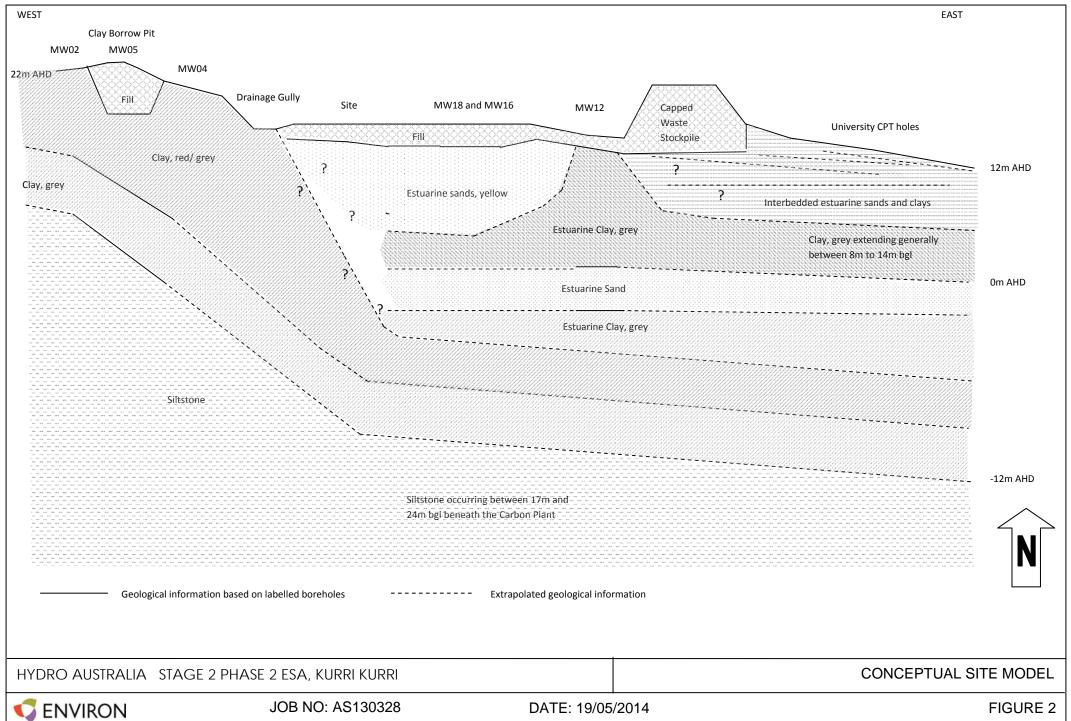
10.1 User Reliance

This report has been prepared exclusively for [INSERT COMPANY NAME] and may not be relied upon by any other person or entity without ENVIRON's express written permission.

Hydro Aluminium Kurri Kurri Pty Ltd June 2014

Figures

DATE: 19/05/2014


Location of Smelter

Location of Buffer Zone

Location of Land Owned by Hydro

JOB NO: AS130328 DATE: 19/05/2014 FIGURE 2



- New groundwater well locations
- ▲ New soil locations
- Existing sampling locations

AEC 2 - Anode Waste Pile

S ENVIRON

- New groundwater well locations
- Existing sampling locations

AEC 3 – Refuelling Area

S ENVIRON

- ▲ New soil locations
- Existing sampling locations

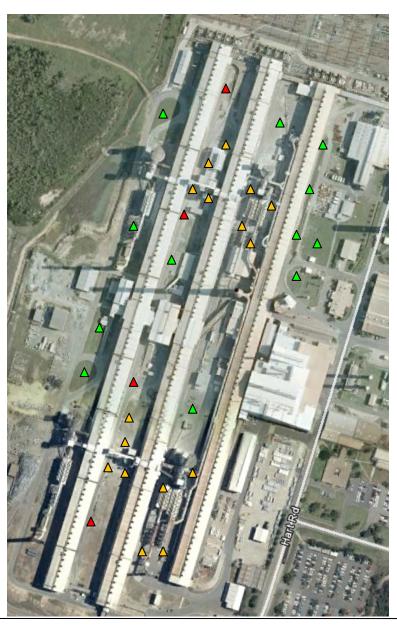
AEC 4 – Diesel Spray Area

S ENVIRON

- New groundwater well locations
- ▲ New soil locations
- Existing sampling locations

AEC 8 – Carbon Plant

S ENVIRON



- ▲ New soil locations
- Existing sampling locations

AEC 11 – Washdown Bay

S ENVIRON

- △ New soil locations AEC 25
- △ New soil locations AEC 12
- Existing sampling locations

AEC 12 – Pot Lines and AEC 25 – Dry Scrubbers

- ▲ New soil locations
- Existing sampling locations

AEC 26 – Ring furnace Scrubber

S ENVIRON

New soil locations

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

AEC 28 – Playing Fields

SENVIRON

JOB NO: AS130328 DATE: May 2014

▲ New soil locations

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

AEC 29 – Area East of Playing Fields

S ENVIRON

▲ New soil locations

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

AEC 30 – Area East of Clay Borrow Pit

S ENVIRON

▲ New soil locations

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

AEC 31 – Storage Area West of Clay Borrow Pit

Appendix C

Field Methodologies

1 Field Methodology

1.1 Soil Sampling

The fieldwork methodology for soil sampling is outlined in Table A.1.

Table A.1: Soil Fi	eld Methodology
Activity	Details
Soil Logging	Soil logging was undertaken by two suitably qualified and experienced environmental scientists from ENVIRON. The push tube drilling locations were logged by Kirsty Greenfield, who completed the fieldwork for the 2012 Phase 2 ESA. Kirsty has 12 years experience as an environmental scientist. The test pit and hand auger locations were logged by Kate Woods, who has 7 years of experience as an environmental scientist.
Intrusive Investigation	Three intrusive investigation methods were used during this investigation: drilling, hand augering and test pitting.
Methods	Test pitting was completed using a back hoe to excavate through fill material (where present) into natural soil. Test pitting was completed in large open areas of the Smelter Site, such as the playing fields, the area next to the playing fields and the storage area west of Pot Line 3.
	Boreholes were drilled using pushtubes to the required depth of the investigations in areas of the Smelter Site not accessible for test pitting. Solid flight augers were used to complete the boreholes that were completed as groundwater monitoring wells.
	Where shallow sampling was required in grassed areas of the Smelter Site, soil samples were collected by hand auger to a depth of 0.5m bgs or prior refusal.
Soil Sampling	Soil sampling was completed as per the requirements of Table 5.4 of the SAQP (June 2014). This table indicates the depth at which soil samples are to be collected for each AEC.
Soil Screening	Screening of soil samples for the presence of volatile contaminants was not undertaken, as volatile contaminants were not the main chemicals of concern.
Decontamination	A hand auger was the only non-disposable sampling equipment used. The hand auger was decontaminated by washing in a Decon90 solution and rinsing with water between samples.
Disposal of Soil	Test pits were backfilled with spoil and track rolled. Spoil was returned to the boreholes, where possible. Excess spoil was collected into a bin on site for disposal by Hydro personnel.

1.2 Groundwater Sampling

The fieldwork methodology for groundwater sampling is outlined in Table A.2.

Table A.2: Groundwater Field Methodology			
Activity	Details		
Well Installation	The groundwater wells were extended from the boreholes to approximately 2m below the top of groundwater using solid flight augers.		
	The wells were constructed using machine slotted 50mm PVC screen from the base of the well to 1m past the intercepted groundwater depth and screw threaded 50mm PVC casing extended to the surface.		
	The well annulus was backfilled with 2mm graded sand to approximately 1m past the top of the screen, followed by bentonite backfill for approximately 1m, followed by backfill of the cuttings to the surface. Where the cuttings could not be used a backfill, bentontie backfill was used. A lockable steel monument or a gatic cover in traffic areas was concreted in over the well access.		
Wee Development	Wells were developed by bailing the wells dry with a bailer.		
Well Gauging	Monitoring wells were gauged using an oil/ water interface probe. The interface probe was decontaminated between each measurement.		
Well Purging	Groundwater purging and sampling was completed approximately one week following well installation. A minimum of 0.5L was removed from each monitoring well using low flow peristaltic sampling equipment. Groundwater parameters, including pH, temperature, dissolved oxygen, redox potential and electrical conductivity were recorded using a water quality meter during purging.		
Sampling Methods	Following stabilisation of groundwater parameters, sampling was completed using low flow techniques.		
Decontamination	A short length of silicon tubing used in the peristaltic pump was decontaminated using Decon90 and potable water.		
Disposal of Water	Groundwater collected during purging and sampling was disposed of to land down gradient of the well following sampling.		

1.3 Groundwater Observations

During the drilling of the new wells, groundwater was encountered within estuarine sands at depths ranging between 1m and 5m bgs beneath the Smelter Site.

The newly installed and 2012 groundwater wells were gauged during groundwater sampling, as shown in Table A.3. Groundwater depths within the estuarine sands range from 10.42mAHD in MW106 to 13.81mAHD in S3A.

Groundwater in MW12 is located within sands beneath a confining clay layer at a depth of 8.17mAHD. Groundwater at this location is considered to be disconnected from the shallow aquifer.

Well ID	Screened	Depth to Water	Depth to Water	Depth to Water	Depth to Water
	Interval	(m BGL) 2012	(m BGL) 2014	(mAHD) 2012	(mAHD) 2014
MW01	5.3 – 11.3	3.10	NS	19.7	NS
MW03	4.8 – 10.8	4.83	NS	19.3	NS
MW04	4.5 – 10.5	1.31	NS	18.4	NS
MW05	1 – 4	2.19	NS	22.6	NS
MW06	3 – 6	1.55	2.54	12.2	11.23
MW07	0.5 - 3.5	1.85	2.20	13.9	13.5
MW08	0.5 - 3.5	0.97	1.32	13.8	13.48
MW09	2.5 – 5.5	2.02	2.20	13.5	13.29
MW10	3.5 – 6.5	2.94	3.15	12.3	12.14
MW11	1.4 – 4.4	1.68	1.96	14.0	13.71
MW12	11.5 – 14.5	6.99	6.53	7.7	8.17
MW13	0.9 - 3.9	1.53	1.76	13.4	13.15
MW14	4.5 – 7.5	2.94	3.25	12.4	12.07
MW15	3 – 6	2.42	3.05	12.1	11.42
MW16	1 – 3	0.23	0.61	14.1	13.74
MW17	3 – 6	0.37	1.45	14.0	12.97
MW18	0.8 - 3.8	1.85	1.73	13.6	13.74
MW19	3 – 6	2.20	2.38	12.1	11.88
MW20	3 – 6	2.38	2.63	11.9	11.64
MW21	5.6 – 11.6	3.80	NS	13.3	NS
S3B	Unknown	4.60	4.45	11.2	11.36
S3A	Unknown	1.42	1.91	14.3	13.81
MW101	2 – 5	-	1.76	-	13.35
MW102	1 – 4	-	1.53	-	13.56
MW103	3 – 6	-	1.79	-	13.03
MW104	1 – 4	-	1.78	-	13.18
MW105	1 – 4	-	1.02	-	13.66
MW106	2.5 – 5.5	-	4.81	-	10.42
MW107	1 – 4	_	1.43	-	13.53

Groundwater flow in the estuarine sands aquifer at the Smelter Site has been impacted by the construction of the Carbon Plant, which involved the excavation of sands to depths of 5.6m bgl and backfilling with granular material around the concrete lined pits containing the bake furnaces. The general groundwater flow direction beneath the Smelter Site is understood to be towards the north east, flowing towards the low lying Wentworth Swamp.

Groundwater parameters were recorded during groundwater sampling, including pH, electrical conductivity (EC), redox potential, dissolved oxygen and temperature. This data is presented in Table A.4 and field sheets are included in Appendix H.

Table A.4: Groundwater Parameters					
Well ID	рН	EC (µS/cm)	DO (ppm)	Redox (Eh)	Temp (°C)
MW06	6.19	24,890	1.84	157	19.6
MW07	6.22	1900	2.03	126	15.4
MW08	6.26	322	4.12	113	17.9
MW09	7.36	4590	5.04	66	18.9
MW10	6.12	10,260	1.40	107	18.9
MW11	6.71	2146	3.81	56	16.5
MW12	6.24	16,020	2.46	139	20.4
MW13	7.32	5040	3.35	50	17.9
MW14	7.14	5040	4.83	45	19.8
MW15	9.7	1954	2.39	81	19.7
MW16	6.97	458	2.88	114	17.0
MW17	6.94	888	4.43	125	18.0
MW18	5.60	234	3.16	172	16.6
MW19	6.38	1111	2.54	77	19.7
MW20	6.94	2570	6.69	78	17.3
MW21	Not Sampled	 Inaccessible due t 	o parked cars		
S3A	8.13	270	9.14	81	15.3
S3B	7.13	1213	7.14	91	19.4
MW101	6.55	548	4.25	94	20.2
MW102	7.06	482	4.29	106	19.5
MW103	5.98	2210	2.02	93	17.5
MW104	6.84	2660	0.83	16	18.5
MW105	9.73	958	1.78	101	15.5
MW106	7.30	1706	1.92	95	19.9

Table A.4: Groundwater Parameters					
Well ID	рН	EC (µS/cm)	DO (ppm)	Redox (Eh)	Temp (°C)
MW107	5.52	604	2.06	153	16.0

The background well, MW06, which is located within the estuarine sand aquifer, has an electrical conductivity result indicating brackish water (24,890 μ g/L). Electrical conductivity results for other wells within the estuarine sand aquifer at the Smelter Site vary between fresh (234 μ g/L and 1954 μ g/L) and brackish water (2146 μ g/L and 16,020 μ g/L).

The background well (MW06) has a pH of 6.19. pH in on-site wells varies from 5.52 in MW107 to 9.73 in MW105. The pH range extends marginally outside the normal range for groundwater systems of 6 to 8.5.

Appendix D

QA/QC Assessment

QUALITY ASSURANCE AND QUALITY CONTROL

A quality assurance assessment for this report is presented in Table A, B and C below. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations, as outlined in NSW DEC (2006) and NSW EPA (2007) guidelines. These Data Quality Indicators (DQIs) are outlined in Section 6 of the SAQP.

Sampling Methodology	ENVIRON Assessment
Sampling Pattern and Locations	Soil and groundwater samples were collected from targeted locations based on ENVIRON's assessment of PAECs and COCs completed as part of the SAQP.
	Sampling patterns for AECs identified from the 2012 Phase 2 ESA were generally targeted to allow for the vertical and lateral delineation of contamination. Sampling patterns for PAECs identified as part of the data gap review were generally grid based to assess the potential for contamination in these areas.
	Sampling locations were completed at the following AECs identified from the 2012 Phase 2 ESA:
	Anode Waste Pile, Refuelling Area, Diesel Spray Area, Carbon Plant, Washdown Bay and Pot Lines.
	It is noted that sampling locations at the Refuelling Area and Washdown Bay were limited by the locations of buildings and services. The available sampling locations did not have an adverse impact on the sampling patterns in these areas.
	Sampling locations were completed at the following PAECs identified during the data gap review:
	Dry Scrubbers, Bake Furnace Scrubber, Playing Fields, Area East of Playing Fields and Storage Area West of Pot Line 3.
Sampling Density	The number of soil investigation locations at the site does not meet the minimum recommended by EPA (1995) "Sampling Design Guidelines". As the investigations are targeted to specific PAECs at the Smelter Site, use of the EPA (1995) "Sampling Design Guidelines" is not relevant in this case.
Sample depths	Soil sample depths were targeted to either the depth at which contamination was identified in the 2012 Phase 2 ESA or the depth at which contamination was likely to be present based on the method of contamination.
	The method of contamination for soil around the Dry Scrubbers and Bake Furnace Scrubber was considered to be aerial fallout. As such, surface soils were targeted for investigation.
	The method of contamination for soil at the Playing Fields, Area East of Playing Fields and Storage Area West of Pot Line 3 was the potential burial of wastes. As such, test pits were excavated to the full depth of any identified fill material into underlying natural soil. Soil samples were collected from within the fill material and from natural soil.
Sample Collection Method	Soil samples were collected from push tubes, test pits and hand augers. Soil samples from test pits were collected from the

Sampling Methodology	ENVIRON Assessment
	centre of the backhoe bucket. Sample jars were filled using a new pair of dedicated disposable gloves for each sample.
	Groundwater samples were collected using low-flow methods (peristaltic pump). Dedicated tubing was used for each well.
Decontamination Procedures	Decontamination was not required for the push tubes or test pits as soil samples were collected directly from each push tube or from the centre of the backhoe bucket.
	The hand auger was decontaminated between the collection of samples by brushing off the soil and washing the hand auger in a solution of Decon90 and potable water.
	The small piece of tubing that was reused in groundwater sampling was decontaminated using Decon90 and potable water.
Sample handling and containers	All soil samples were placed into laboratory-supplied, acid- rinsed glass jars. Water samples were collected into laboratory- supplied bottles that contained preservatives, as required. Soil and water samples were placed on ice following collection and during transportation to the laboratory.
Chain of Custody	Samples were transported to the laboratory under chain of custody conditions. The chain of custody forms were signed by the laboratory on receipt of the samples.
Detailed description of field screening protocols	Field screening for volatiles was not completed during soil sampling as volatile contaminants were not the main chemical of concern.
Calibration of field equipment	No field equipment requiring calibration was used during this investigation.
Sampling Logs	The lithology of surface soil samples was documented on the borehole, test pit and hand auger logs, which are included in Appendix E.

Table B: QA/QC – Field and Lab Quality Assurance and Quality Control			
Field and Lab QA/QC	ENVIRON Comments		
Field quality control samples	Analysis of intra laboratory duplicates for soil was completed at a rate of 7-8%, which is just less than the targeted rate of 10%. Analysis of inter laboratory duplicates was completed at a rate of 2%, which is less than the targeted rate of 5%.		
	Analysis of intra laboratory duplicates for groundwater was completed at a rate of 8%, which is just less than the targeted rate of 10%. Analysis of inter laboratory duplicates was completed at a rate of 4%, which is just less than the targeted rate of 5%		
	The low rate of duplicate analysis is not considered to affect the assessment of precision based on the acceptable relative percent differences (RPDs) between primary and duplicate sample results.		

Table B: QA/QC – Field and Lab Quality Assurance and Quality Control			
Field and Lab QA/QC	ENVIRON Comments		
	Trip spike and trip blank samples were not collected for anlaysis as volatile contaminants were not the main chemicals of concern.		
Field quality control results	RPD results for soil were within acceptable limits, aside from high RPDs for fluoride in two intra laboratory duplicate pairs and high RPDs for PAHs in one intra laboratory duplicate pair. The primary and duplicate concentrations in these three samples were well below the selected criteria and the high RPDs are not considered to affect the outcome of the investigation. Duplicate soil results are included in Table LR12.		
	RPD results for groundwater were within acceptable limits, with the exception of aluminium, chromium, nickel, lead and zinc in duplicate pair MW102/ DUP A. The duplicate results appear to be anomalous and this sample may not have been filtered at the laboratory, as requested. Duplicate groundwater results are included in Table LR13.		
NATA registered laboratory and NATA endorsed methods	Envirolab was used as the primary laboratory and ALS was used as the secondary laboratory. Envirolab and ALS laboratory certificates are NATA stamped and both laboratories are accredited for the analyses performed for this assessment.		
Analytical methods	A summary of analytical methods were included in the laboratory test certificates.		
Holding times	Review of the COCs and laboratory certificates indicate that holding times were met.		
Practical Quantitation Limits (PQLs)	PQLs for soil and groundwater analytes were below the assessment criteria.		
Laboratory quality control samples	Laboratory quality control samples including duplicates, laboratory control samples, matrix spikes, surrogate spikes and blanks were undertaken by the laboratories at appropriate frequencies.		
Laboratory quality control results	All results for laboratory soil duplicates, laboratory control samples, matrix spikes and surrogates were acceptable and no detections were made in blank samples.		

Overall it is considered that the completed investigation works and the data obtained adequately complied with the requirements of NSW DEC (2006) and NSW EPA (2007) guidelines. Assessment of the Data Quality Indicators of completeness, comparability, representativeness, precision and accuracy, which are outlined in Section 6 of the SAQP (ENVIRON, 2012), is made in Table C.

Table C: QA/QC - Assessme	ent of DQIs
DQI	ENVIRON Comments
Completeness	Completeness is a measure of whether all the data necessary to meet the project objectives was collected.
	As noted in Table A above, sampling locations were generally

Table C: QA/QC – Assessment	of DQIs
DQI	ENVIRON Comments
	completed as per the SAQP. In two areas, sampling locations were restricted by buildings and services. However this did not impact on data collection. Soil and groundwater samples were analysed for chemicals of concern based on historical use of each area of the Smelter Site in conjunction with observations made during the fieldwork. ENVIRON considers the investigation to be complete.
Comparability	Comparability is a measure of confidence that the data may be considered to be equivalent for each sampling and analysis event. The field investigations were completed by experienced personnel from ENVIRON using standard operating procedures. Part of the fieldwork, including groundwater well installation, was completed by Kirsty Greenfield who also completed the 2012 Phase 2 field investigations. The laboratory analysis was undertaken by NATA registered laboratories using accredited analytical methods. It is noted that the primary laboratory for this investigation (Envirolab Services) was the secondary laboratory for the 2012 Phase 2. The primary and secondary laboratories were switched as Envirolab Services provided better analytical services for assessment of fluoride in soil and groundwater. ENVIRON considers the soil and groundwater data collected during this Phase 2 investigation to be comparable to the 2012 Phase 2 investigation.
Representativeness	Representativeness is the confidence that the data is representative of each media present at the site. In the field, representativeness is achieved by completing an adequate number of sampling points to characterise each PAEC/ AEC. As outlined in Table A, both targeted and grid-based sampling patterns were used to assess contamination at the PAECs/AECs and the number of sampling points at each PAEC/AEC was considered adequate for characterisation. Both soil and groundwater was sampled.
Precision	Precision is a measure of the reproducibility of the data. In the field, ENVIRON achieved precision by using standard operating procedures for the collection of soil and groundwater samples and by collecting duplicate and triplicate samples for analysis. As outlined in Table B, RPD results for duplicate samples were acceptable. At the laboratory, precision is assessed using blind replicate samples and split samples. As outlined in Table B, all results for laboratory soil duplicates were acceptable and no detections were made in blank samples.
Accuracy	Accuracy is a measure of the closeness of a measurement to the true parameter value. In the field, ENVIRON achieved accuracy by using standard operating procedures for the collection of soil and groundwater samples.

Table C: QA/QC – Assessment	of DQIs
DQI	ENVIRON Comments
	At the laboratory, precision is assessed using blind replicate samples and split samples. As outlined in Table B, all results for laboratory control samples, matrix spikes and surrogates were acceptable and no detections were made in blank samples.

In general, the Data Quality Indicators of completeness, comparability, representativeness, precision and accuracy have been met. It is considered that the data is of suitable quality to meet the project objectives.

Appendix E

NEPM (2013) EIL Calculation Spreadsheets

Inputs
Select contaminant from list below
Cr_III
Below needed to calculate fresh and
aged ACLs
Enter % clay (values from 0 to 100%)
1
Below needed to calculate fresh and
aged ABCs
Measured background concentration
(mg/kg). Leave blank if no measured
value
or for fresh ABCs only
Enter iron content (aqua regia
method) (values from 0 to 50%) to
obtain estimate of background
or for aged ABCs only
Enter State (or closest State)
New
102774
Enter traffic volume (high or low)
low
Enter State (or closest State) NSW Enter traffic volume (high or low)

Outputs		
Land use	Cr III soil-specific EILs	
	(mg contaminar	nt/kg dry soil)
Y	Fresh	Aged
National parks and areas of high conservation value	#NUM!	70
Urban residential and open public spaces	#NUM!	190
Commercial and industrial	#NUM!	320

Inputs
Select contaminant from list below
Cu
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)
7.26
Enter soil pH (calcium chloride method) (values from 1 to 14)
5.5
Enter organic carbon content (%OC) (values from 0 to 50%)
1.3
Below needed to calculate fresh and aged ABCs
Measured background concentration (mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia
method) (values from 0 to 50%) to obtain estimate of background
or for aged ABCs only
Enter State (or closest State)
NSW Enter traffic volume (high or low)
low

Outputs		
Land use	Cu soil-specific EILs (mg contaminant/kg dry soil)	
v—	Fresh	Aged
National parks and areas of high conservation value	#NUM!	60
Urban residential and open public spaces	#NUM!	150
Commercial and industrial	#NUM!	210

Inputs
Select contaminant from list below
Ni
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity
(silver thiourea method) (values from
0 to 100 cmolc/kg dwt)
7.26
-
¥
-
Below needed to calculate fresh and aged ABCs
The second secon
Measured background concentration (mg/kg). Leave blank if no measured
value
12/02/02/02
or for fresh ABCs only
Enter iron content (agua regia
method) (values from 0 to 50%) to
obtain estimate of background
2 3
or for aged ABCs only
or recognition of the second
Enter State (or closest State)
NSW
Enter traffic volume (high or low)
low

Outputs		
Land use	Ni soil-specific ElLs	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	20
Urban residential and open public spaces	#NUM!	85
Commercial and industrial	#NUM!	140

Inputs
Select contaminant from list below
Zn
Below needed to calculate fresh and
aged ACLs
Enter cation exchange capacity
(silver thiourea method) (values from 0 to 100 cmolc/kg dwt)
o to 100 emole/kg dwt)
7.26
Enter soil pH (calcium chloride
method) (values from 1 to 14)
5.5
0.0
-
Below needed to calculate fresh and
aged ABCs
Measured background concentration
(mg/kg). Leave blank if no measured
value
or for fresh ABCs only Enter iron content (agua regia
method) (values from 0 to 50%) to
obtain estimate of background
or for aged ABCs only
Enter State (or closest State)
NSW
Enter traffic volume (high or low)
low
IOW

Outputs					
Land use	Zn soil-specific EILs				
	(mg contaminar	nt/kg dry soil)			
	Fresh	Aged			
National parks and areas of high conservation value	#NUM!	130			
Urban residential and open public spaces	#NUM!	310			
Commercial and industrial	#NUM!	440			

Appendix F

Borehole, Test Pit and Hand Auger Logs

BOREHOLE NUMBER HA101

PAGE 1 OF 1

G	ENVIRON
----------	---------

						ırri Kurri				
PR	JJE	CINU	JMBE	R _A	S1303	83	PROJECT LOCATION			
DA	TE S	START	red _	26/6/	14	COMPLETED 26/6/14	R.L. SURFACE		DATUM	
DR	LLII	NG C	ONTR	ACTO	R		SLOPE 90°		BEARING	
EQ	UIPI	MENT	_Hai	nd Aug	ger		HOLE LOCATION AEC12	2		
HOLE SIZE LOGGED BY KW									CHECKED BY	
NO	TES									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Additional Observations	
						FILL; Silty SAND, dark brown, no odour		HA101 - 0.0n	1	
			_	\bowtie						
								HA101 - 0.1n	-	
			_			FILL; Sandy CLAY, no odour		HA101 - 0.15r	-	
						, ,		HA101 - 0.2n	1	
			_			FILL; Silty SAND, dark brown, no odour				
				XXXX		Borehole HA101 terminated at 0.4m				
			۸۶							
			0,5							
			-							
			_							
			_							
			_							
			1,0							
			_							
			_							
			-							
			_							
			1 <u>,5</u>							
			-							
			-							
			-							
			_							

BOREHOLE NUMBER HA102 PAGE 1 OF 1

ENVIRON

	E	EN	VI	RC	N				
						PROJECT NAME Phase 2 ESA PROJECT LOCATION			
ATE	STAF	RTED _	26/6/	14	COMPLETED 26/6/14	R.L. SURFACE	_	DATUM	
EQUIPMENT Hand Auger HOLE SIZE									
NOTES									
Water	RL (m)		Graphic Log	Classification Symbol	Material Descrip	otion	Samples Tests Remarks	Additional Observations	
T					FILL; Sandy SILT, dark brown, slight H _s 2 odou	ır, moist			
		_					HA102 - 0.1m	1	
		_					HA102 - 0.15r	n	
							HA102 - 0.2m	1	
		-							
		_							
		0,5	***		Borehole HA102 terminated at 0.5m				
		_							
		_							
		_							
		_							
		1,0							
		-							
		_							
		_							
		_							
		1,5							
		1,5							
		_							
		_							
		_							

BOREHOLE NUMBER HA103 PAGE 1 OF 1

ENVIRON

CLIENT Hydro Aluminium Kurri Kurri PROJECT NAME Phas								e 2 FSΔ	
					S1303				
						COMPLETED _26/6/14			
DRILLING CONTRACTOR SLOPE 90° EQUIPMENT Hand Auger HOLE LOCATION A									
						CHECKED BY			
NO.							_ LOGOLD DI _KW		
					_				
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations
						FILL; Silty SAND, dark brown with (small) grave	, no odour		
			_					110400 04	
								HA103 - 0.1m	-
			-			As Above, light brown with timber, no gravel, no	odour	HA103 - 0.15m	-
				\bowtie				HA103 - 0.2m	_
			-	\bowtie					
				\bowtie					
			-	\bowtie		Grey, no gravel			
			0,5						
			0,5	***		Borehole HA103 terminated at 0.5m			
			_						
			_						
			1,0						
			_						
			-						
			-						
			-						
			1 =						
			1 <u>,5</u>						
			-						
- 1									

BOREHOLE NUMBER HA104 PAGE 1 OF 1

	ENVIRON
--	----------------

							DDO IFOT NAME Disco	- 2.504		
					um Ku S1303	rri Kurri 83				
								.L. SURFACE DATUM		
DRILLING CONTRACTOR SLOPE 90°										
EQUIPMENT Hand Auger HOLE LOCATION AEC12										
HOLE SIZE LOGGE NOTES							LOGGED BY KW		CHECKED BY	
NO	ES									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations	
						FILL; Silty SAND, brown with gravel (small)				
						FILL; Sandy CLAY, brown/orange, soft, moist wi	th gravel (small)	1		
				\bowtie		, cana, ca. ii, biomirorango, con, most wi	g. a. o. (oan)	HA104 - 0.1M	_	
								HA104 - 0.15N	_	
				\bowtie				HA104 - 0.2M		
						FILL; Silty SAND, grey				
			-							
			0,5	\bowtie						
			0,5	(XXX		Borehole HA104 terminated at 0.5m				
			1,0							
			-							
			1,5							
			1,3							

BOREHOLE NUMBER HA105

PAGE 1 OF 1

ENVIRON

CLI	ENIT					urri Kuurri	PROJECT NAME Phase 2 ESA			
						nri Kurri 83				
							R.L. SURFACE DATUM SLOPE 90° BEARING			
	IOTES									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Additional Observations	
						FILL; Silty SAND, brown, with gravel (small), no o	dour			
				\bowtie		FILL; Sandy CLAY, brown/orange with gravel (sm	nall), no odour	HA105 - 0.1N	1	
			_	\bowtie				HA105 - 0.15l	М	
								HA105 - 0.2N	1	
			_			FILL; Silty SAND, dark brown, no odour				
			- 0,5							
						Borehole HA105 terminated at 0.5m				
			_							
			_							
			_							
			_							
			1 <u>,0</u>							
			1,0							
			_							
			_							
			_							
			_							
			4.5							
			1 <u>,5</u>							
			_							
			_							
			_							
			_							

BOREHOLE NUMBER HA106 PAGE 1 OF 1

	ENVIRON
--	---------

						JIN ırri Kurri		PROJECT NAME Phase	e 2 ESA			
					S1303							
										DATUM		
DRILLING CONTRACTOR												
EQUIPMENT Hand Auger HOLE SIZE LOGGED BY KW CHECKED												
	TES							LOGGED BT KVV		STILORED DT		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol		Material Description	1	Samples Tests Remarks	Additional Observations		
						FILL; Silty SAND, with gravel (small), dark brown,	no odour				
			_						HA106 - 0.1M	_		
				\bowtie					HA106 - 0.1M	-		
			-	\bowtie					HA106 - 0.13W	-		
				XXX		Refusal	0.05		1,7,100 - 0.2101	-		
			-			Borehole HA106 terminated at	0.25m					
			_									
			0,5									
			0, <u>0</u>									
			_									
			_									
			_									
			_									
			1,0									
			-									
			-									
			-									
			_									
			1 <u>,5</u>									
			-									
			-									
			-									
			-									

BOREHOLE NUMBER HA107 PAGE 1 OF 1

G	ENVIRON
----------	---------

								e 2 ESA			
PRO	IJΕ	CT NI	JMBE	R _A	S1303	83	_ PROJECT LOCATION _	PROJECT LOCATION			
DA	TE S	TAR	ΓED	26/6/	14	COMPLETED 26/6/14		CE DATUM			
EQUIPMENT Hand Auger HOLE LOCATION											
HOLE SIZE LOGGED BY _KV											
	ΓES										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descri	otion	Samples Tests Remarks	Additional Observations		
						FILL; Silty SAND, dark brown, with gravel (ver	small), no odour				
				\bowtie							
								HA107 - 0.1M	_		
								HA107 - 0.15N	_		
				\bowtie				HA107 - 0.2M			
			-	\bowtie							
				\bowtie							
			-			FILL; Silty SAND, very light brown, no odour, r	noist, no gravel	1			
			۰۰	\bowtie							
			0,5	****		Borehole HA107 terminated at 0.5m		1			
			_								
			1,0								
			-								
			1 <u>,5</u>								
			-								
			-								

BOREHOLE NUMBER HA108 PAGE 1 OF 1

C	ENVIRON
----------	----------------

		E	N'	V١	RC	N				
							PROJECT NAME Phase 2 ESA PROJECT LOCATION			
PROJECT NUMBER _AS130383 DATE STARTED _26/6/14 COMPLETED _26/6/14 DRILLING CONTRACTOR							R.L. SURFACE		DATUM	
EQUIPMENT Hand Auger HOLE SIZE NOTES										
Wethod		RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	tion	Samples Tests Remarks	Additional Observations	
		(,	-			FILL; Silty SAND, dark brown with grass roots,	no odour	HA108 - 0.1M	1	
			_			Lighter Brown				
						Grey, with cobbles Brown		HA108 - 0.3M	1	
+			0,5			Borehole HA108 terminated at 0.5m				
			-							
			_							
			-							
			1,0							
			_							
			1,5							
			- J.J.							
			-							
			1							

BOREHOLE NUMBER HA109 PAGE 1 OF 1

ENVIRON

						COMPLETED _27/6/14				
НО	LE S	SIZE					LOGGED BY KW		CHECKED BY	
NO	TES									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations	
			_			FILL; Silty SAND, dark brown, no odour		HA109 - 0.0-0.1M		
			_							
						FILL; Sandy CLAY, brown/grey with cobbles		HA109 - 0.3-0.4M		
			0,5			FILL; Silty SAND, grey				
						Borehole HA109 terminated at 0.5m				
			1,0							
			1 <u>,5</u>							

BOREHOLE NUMBER HA110 PAGE 1 OF 1

SENVIRON

DA ⁻	TE S	STAR	TED _	27/6/	14	COMPLETED _27/6/14	R.L. SURFACE	R.L. SURFACE DATUM			
DRILLING CONTRACTOR SLO EQUIPMENT Hand Auger HOL HOLE SIZE LOG							HOLE LOCATION AEC8	HOLE LOCATION _AEC8			
	ΓES						_ LOGGLD DI _KW		ONEONED DI		
Method	Water		Depth (m)	Graphic Log	Classification Symbol	Material Descrip	ion	Samples Tests Remarks	Additional Observations		
			_			FILL; Silty SAND, black with grass roots, no odd	our	HA110 - 0.0-0.1M			
			_					HA110 - 0.3-0.4M			
			0,5			FILL; Silty SAND, light brown with cobbles, no c	dour				
			_			Borehole HA110 terminated at 0.5m					
			_								
			_								
			_								
			1,0								
			_								
			_								
			_								
			1 <u>,5</u>								
			,,,,								

BOREHOLE NUMBER HA111 PAGE 1 OF 1

ENVIRON

							PROJECT NAME Phase	e 2 ESA			
PR	ΟJΕ	CT N	UMBE	R _A	S1303	83	PROJECT LOCATION _	JECT LOCATION			
DA.	TE S	STAR	TED	27/6/ ⁻	14	COMPLETED 27/6/14					
	TES						100013 1. <u>100</u>				
					_						
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	on	Samples Tests Remarks	Additional Observations		
						FILL; Silty SAND, black, grass roots, no odour		HA111 - 0.0-0.1M			
			_			FILL; Silty SAND, brown with cobbles, no odour					
			_					HA111 - 0.3-0.4M	_		
			0,5								
						Borehole HA111 terminated at 0.5m					
			_								
			_								
			_								
			_								
			1,0								
			_								
			_								
			_								
			_								
			1 <u>,5</u>								
			_								
			_								
			_								
			_								

BOREHOLE NUMBER HA112 PAGE 1 OF 1

C	ENVIRON
----------	----------------

	1		IN	۷I	ΚL	JIN			
						ırri Kurri			
PR	ΟJΕ	CT N	UMBE	R _A:	S1303	83	_ PROJECT LOCATION _		
DATE STARTED 27/6/14 COMPLETED 27/6/14 R.L. SURFACE									
DRILLING CONTRACTOR SLOPE _90°									
							_ LOGGED BY KW		CHECKED BY
NO.	TES	<u> </u>						<u> </u>	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations
						FILL; Silty SAND, black/brown, grass roots, with	cobbles, no odour	HA112 - 0.0-0.1M	
			_			As Above, light brown		HA1120 - 0.3-0.4M	
			0,5			Borehole HA112 terminated at 0.5m			
			_			Boleriole 17/11/2 terminated at 0.0ml			
			_						
			_						
			_						
			1,0						
			_						
			_						
			_						
			_						
			1 <u>,5</u>						
			_						
			_						
			_						

BOREHOLE NUMBER HA113

	ENVIRON
CLIENT	Hvdro Aluminium Kurri Kurri

JΕ	CT N	JMBER	AS1303	383	PROJECT LOCATION	N	
				COMPLETED _27/6/14			
E S ES					LOGGED BY KW		CHECKED BY
Water	RL (m)	Depth (m)	Classification Symbol	Material Des	cription	Samples Tests Remarks	Additional Observations
		-		FILL; Silty SAND, brown with cobbles (smal	l) and grass roots, no odour	HA113 - 0.0-0.1M	
				FILL; Sandy CLAY, brown/dark brown with	gravel, no odour		
						HA113 - 0.3-0.4M	_
		0,5					
				Borehole HA113 terminated at 0.5m			
		_					
		-					
		_					
		1,0					
		1 <u>,5</u>					

BOREHOLE NUMBER HA114 PAGE 1 OF 1

	ENVIRON
--	----------------

						/ IN rri Kurri	PROJECT NAME Phas	e 2 FSA	
					S1303				
						COMPLETED 27/6/14			
						COMPLETED 2/10/14			
	TES						_ LOGGED DT _RW		CHECKED BY
-10	0								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations
			_			FILL; Sandy CLAY with crushed brick, orange, r	no odour	HA114 - 0.0-0.1M	
			-			TILL CILL CAND because the scholar formal and			
			_			FILL; Silty SAND, brown with cobbles/gravel, no	odour	HA114 - 0.3-0.4M	
			0,5			\FILL; Sandy CLAY, brown with gravel, no odour	,		
			_			Borehole HA114 terminated at 0.5m			
			_						
			_						
			_						
			1,0						
			_						
			_						
			_						
			1 <u>,5</u>						
			_						
			_						

BOREHOLE NUMBER HA115 PAGE 1 OF 1

ENVIRON

						ZIN ırri Kurri	PROJECT NAME Phas	se 2 FSA	
					S1303				
						COMPLETED _27/6/14			
EQUIPMENT Hand Auger HOLE LOCATION AEC26 HOLE SIZE LOGGED BY KW									
	TES								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descri	otion	Samples Tests Remarks	Additional Observations
			_			FILL; Silty SAND, brown with black ash and gr	avel (small), no odour	HA115 - 0.0-0.1M	
			_			FILL; Sandy CLAY, brown with black ash and	gravel, no odour	HA115 -	
			_					0.2-0.3M	
						Borehole HA115 terminated at 0.4m		_	
			0 <u>,5</u>						
			_						
			_						
			_						
			1 <u>,0</u>						
			., <u>.</u>						
			_						
			_						
			1 <u>,5</u>						
			_						
			_						
			_						
			_						

BOREHOLE NUMBER HA116 PAGE 1 OF 1

SENVIRON

						/ I N rri Kurri PR	OJECT NAME Phase	2 FSA		
					S1303					
						COMPLETED <u>27/6/14</u> R.L. : SLOI				
EQUIPMENT Hand Auger HOLE LOCATION AEC26 HOLE SIZE LOGGED BY KW										
	TES									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Additional Observations	
			_			FILL; Silty SAND, brown, with gravel, no odour	-	HA116 - 0.0-0.1M		
			_			FILL; Silty SAND, brown with gravel (compacted roadbas odour	se), small to medium, no	HA116 - 0.2-0.25M HA116 - 0.3-0.4M		
			0,5	***		Borehole HA116 terminated at 0.4m				
			_							
			_							
			_							
			1, <u>0</u>							
			_							
			_							
			_							
			1 <u>,5</u>							
			_							
			_							
			_							

BOREHOLE NUMBER HA117 PAGE 1 OF 1

G	ENVIRON
----------	---------

			II.	۷I	ΚC	JIN			
CLIENT Hydro Aluminium Kurri Kurri PROJECT NUMBER AS130383									
PRO	JΕ	CT N	UMBE	R _A	S1303	83	PROJECT LOCATION _		
						COMPLETED _27/6/14			
DRILLING CONTRACTOR									
EQUIPMENT Hand Auger HO									
HOLE SIZENOTES							LOGGED BY KW		CHECKED BY
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations
			_			Silty SAND, brown, no odour		HA117 - 0.0-0.1m	
			-			Sandy CLAY, brown with gravel (small to mediu	m), no odour, very compacted	HA117 - 0.25-0.3m HA117 -	
								0.3-0.35m HA117 - 0.35-0.4m	
				27772		Borehole HA117 terminated at 0.4m		0.00-0.4111	_
			0,5						
			-						
			-						
			-						
			1,0						
			1,0						
			-						
			ا ِ ا						
			1 <u>,5</u>						
			-						
- 1			ا م م ا						

BOREHOLE NUMBER HA119 PAGE 1 OF 1

	ENVIRON
CLIENT	Lludra Alumainium Kurri Kurri

V		E	N	VI	RC	N				
							PROJECT NAME Phase 2 ESA PROJECT LOCATION			
DAT DRI EQI HOI	E S LLII JIPI LE S	START NG CO MENT SIZE	TED _ ONTRA	27/6/ ACTO nd Aug	14 R	COMPLETED _27/6/14	R.L. SURFACE SLOPE 90° HOLE LOCATION	AEC26	DATUMBEARING	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descri	ption	Samples Tests Remarks	Additional Observations	
			_			Silty SAND, brown, gravel (small), no odour		HA119 - 0.0-0.1m		
			_			Sandy CLAY, brown with gravel, no odour				
								HA119 - 0.3-0.4m		
			0,5			Borehole HA119 terminated at 0.42m				
			- 1 <u>,5</u>							
			-							

BOREHOLE NUMBER HA120 PAGE 1 OF 1

ENVIRON

) N ırri Kurri	DDO JECT NAME DI	2554			
						PROJECT NAME Phase 2 ESA PROJECT LOCATION				
ATE RILI QUI	STAR ING C	TED _ ONTR	27/6/ ACTO nd Au	14 R	COMPLETED 27/6/14	R.L. SURFACESLOPE _90°HOLE LOCATION _AEC26		DATUMBEARING		
	SIZE					LOGGED BY KW		CHECKED BY		
Water		Depth	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations		
		_			Silty SAND, brown, with gravel, no odour		HA120 - 0.0-0.1m			
		_	77777		Sandstone	dian) as a day				
					Sandy CLAY, brown with gravel (small to me	alum), no odour	HA120 - 0.3-0.4m			
		0,5			Borehole HA120 terminated at 0.4m					
		1,0								
		_								
		1 <u>,5</u>								
		_								
		_								

BOREHOLE NUMBER HA121 PAGE 1 OF 1

ENVIRON

			II	۷I	KC)N					
						rri Kurri		OJECT NAME Phase 2 ESA			
PR	IJΕ	CT N	JMBE	R _A	S1303	83	_ PROJECT LOCATION _				
						COMPLETED _27/6/14					
				BEARING							
				CHECKED BY							
Method	Water		Depth (m)	hic Log	Classification Symbol	Material Descrip		Samples Tests Remarks	Additional Observations		
			_			Silty SAND, brown, no odour		HA121 - 0.0-0.1m			
			_			Sandy CLAY, brown, with concrete pieces and compacted, no odour Terminated in compacted ground	gravel (small to medium),				
			_			Borehole HA121 terminated at 0.3m		HA121 - 0.3-0.4m			
			0 <u>,5</u>								
			_								
			_								
			_								
			_								
			1, <u>0</u>								
			_								
			_								
			_								
			1 <u>,5</u>								
			_								
			_								
			_								
			_								

BOREHOLE NUMBER HA122 PAGE 1 OF 1

ENVIRON	
---------	--

CLI	ENT	Г _Ну	dro Al	umini		rri Kurri 83				
DA [.]	ΓE S	STAR	TED _	27/6/	14	COMPLETED 27/6/14	R.L. SURFACE		DATUM	
EQ! HO	JIPI	MENT SIZE	Har	nd Aug	ger		HOLE LOCATION AEC26	3		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	on	Samples Tests Remarks	Additional Observations	
			_			Sandy CLAY, red with cobbles, gravel and crush	ed brick pieces, no odour	HA122 - 0.0-0.1m		
			_							
			_			Sandy CLAY, with asphalt and gravel, no odour		HA122 - 0.3-0.4m	_	
			0,5			Borehole HA122 terminated at 0.5m				
			_							
			_							
			1, <u>0</u>							
			_							
			_							
			_							
			1 <u>,5</u>							
			-							
			-							

BOREHOLE NUMBER HA123

PAGE 1 OF 1

ENVIRON

CLIENT Hydro Aluminium Kurri Kurri						ırri Kurri				
PRO	JΕ	CT N	JMBE	R _A	S1303	83	PROJECT LOCATION _			
						COMPLETED _27/6/14				
						BEARING				
HOLE SIZE LOGGED BY KW NOTES								CHECKED BY		
NO	ES									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations	
						Silty SAND, brown, no odour, Sandy CLAY, brown with gravel, no odour (50%	clay, 50% sand)	HA123 - 0.0-0.1m		
			_					HA123 - 0.1-0.2m		
			0,5			Small-medium gravel				
						Borehole HA123 terminated at 0.5m				
			-							
			_							
			_							
			_							
			1,0							
			_							
			_							
			_							
			_							
			1 <u>,5</u>							
			_							
			_							
			_							
			_							

BOREHOLE NUMBER HA124 PAGE 1 OF 1

📢 ENVIRON

CLIENT Hydro Aluminium Kurri Kurri										
							PROJECT NAME Phase 2 ESA PROJECT LOCATION			
						COMPLETED 27/6/14				
					CHECKED BY					
TO	ES							1		
	Water		Depth (m)	ohic Log	Classification Symbol	Material Descript		Samples Tests Remarks	Additional Observations	
						Silty SAND, brown/grey, no odour		HA124 - 0.0-0.1m		
								HA124 - 0.1-0.2m		
			_			Sandy CLAY, brown, with gravel, no odour		HA124 - 0.2-0.3m		
			_							
			0,5			Borehole HA124 terminated at 0.5m				
			_			Bolenoic 17/12-4 communica de 0.5ml				
			_							
			_							
			_							
			1,0							
			-							
			_							
			-							
			-							
			1 <u>,5</u>							
			-							
			-							
			-							
			-							

BOREHOLE NUMBER HA125 PAGE 1 OF 1

ENVIRON

SLOPE 90° BEAT	
DATE STARTED 27/6/14 COMPLETED 27/6/14 R.L. SURFACE SLOPE 90° BE. BEQUIPMENT Hand Auger HOLE SIZE LOGGED BY KW CHINOTES National Part	
Silty SAND, brown/grey, no odour HA125- 0.0-0.1m HA125- 0.1-0.2m HA125- 0.1-0.2m HA125- 0.2-0.3m Borehole HA125 terminated at 0.5m	
HOLE SIZE HOLE SIZE LOGGED BY KW CH Samples Tests Remarks Remarks Silty SAND, brown/grey, no odour Increased gravel/cobbles, very compacted Double Size Double Size Samples Tests Remarks HA125 - 0.1-0.2m HA125 - 0.2-0.3m Borehole HA125 terminated at 0.5m	
NOTES Note	
NOTES Political Description	
Samples Tests Remarks Naterial Description Samples Tests Remarks Naterial Description Naterial Description Samples Tests Remarks Naterial Description Naterial Descript	ECKED BY
HA125 - 0.0-0.1m HA125 - 0.1-0.2m HA125 - 0.2-0.3m Dota	Additional Observations
Increased gravel/cobbles, very compacted HA125 - 0.2-0.3m O,5 Borehole HA125 terminated at 0.5m	
0,5 Borehole HA125 terminated at 0.5m	
Borehole HA125 terminated at 0.5m -	
Borehole HA125 terminated at 0.5m	
1.0	
1.0. -	
1, <u>0</u>	
1.0	
1,5	

							i Kurri 3				
DA DF	AT RIL QU	E S LIN	TARTE NG CON MENT	D 30	0/6/14 CTOR r and	Terr	atest	COMPLETED 30/6/14	R.L. SURFACE SLOPE 90° HOLE LOCATION AEC3	3	DATUMBEARING
		ES							LOGGED BY _KG		CHECKED BY
Method		Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material D	escription	Samples Tests Remarks	Additional Observations
	,		Details The second of the sec		(m)			BITUMEN FILL; Clayey SAND, brown, medium ALLUVIAL: SAND, yellow, fine grain ALLUVIAL; Clayey SAND, yellow Wet at 3.0m, no odour	ed		

		T <u>Hydro</u>								
DATE STARTED 30/6/14 COMPLE DRILLING CONTRACTOR Terratest EQUIPMENT Auger and Drill Tube HOLE SIZE NOTES								SLOPE 90° HOLE LOCATION AEC	3	BEARING
Method	Water	Well Details		Depth (m)	Graphic Log	Classification Symbol	Material D	escription	Samples Tests Remarks	Additional Observations
							FILL; Clayey SAND, brown, medium ALLUVIAL; SAND, yellow, fine grain ALLUVIAL; Clayey SAND, yellow Wet, no odour			
				<u>5</u>						

CI	IEN		ro Aluı	miniun	n Kurri	Kurri				
DA DE EC	ATE RILL QUIP	STARTE ING COM MENT _ SIZE _	ED 3	0/6/14 CTOR Tube	Terr	atest uger	COMPLETED 30/6/14	R.L. SURFACE SLOPE 90° HOLE LOCATION AEC2		DATUMBEARING
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material De	escription	Samples Tests Remarks	Additional Observations
BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_26_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15				- 1 1			FILL; Gravelly SAND, coarse grained AOS Anodes crushed ALLUVIAL; SAND, fine grained, grey with some clay ALLUVIAL; sandy CLAY, high plastic ALLUVIAL; Clayey SAND, coarse gramoist	then orange, moist	MW103 0.3-0.	
SOREHOL				6			Grading to clay			

Borehole MW103 terminated at 6m

CL	IEN	EN T Hydro	o Alur	miniun	n Kurr	i Kurri				PAGE 1 OF
DA DR EC	TE :	STARTE ING CON MENT _ SIZE _	D 30	0/6/14 CTOR	_Terr	ratest		R.L. SURFACESLOPE _90°HOLE LOCATION _AEC		DATUM BEARING CHECKED BY
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material D	escription	Samples Tests Remarks	Additional Observations
BOREHOLE / TEST PIT A\$130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15				1 1 2 1 3 3 5 6			ALLUVIAL; Sand, fine grained, grey. Wet Borehole MW104 terminated at 4m		MW104 0.0-0	

		EI	۷/	/IF	RO	Ν		БС	JKLI IOL	PAGE 1 OF 1
		T <u>Hydr</u>				_				
DA DR EQ HC	TE S	PROJECT LOCATION						(HTM oil spill)	DATUMBEARING	
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material I	Description	Samples Tests Remarks	Additional Observations
AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15				, ,			CONCRETE FILL; Gravelly SAND, coarse grain odour ALLUVIAL; SAND, khaki/grey, fine Wet Borehole MW105 terminated at 4m		MW105 0.3-0 MW105 0.9-1	
BOREHOLE / TEST PIT A				- - 6						

		T <u>Hydro</u> ECT NUN						PROJECT NAME Phas PROJECT LOCATION		
DR EQ HO	UIP OLE	NG CON	TRAC	TOR	Terr	ratest		R.L. SURFACE SLOPE 90° HOLE LOCATION AEC8 LOGGED BY KG		BEARING
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material	Description	Samples Tests Remarks	Additional Observations
				1			FILL; Gravelly SAND, black/brown, brick ALLUVIAL; SAND, fine grained, brown, falluvial; Sandy CLAY, medium ALLUVIAL; Clayey SAND, brown, falluvial; Claye	plasticity, brown, fine grained sand	MW106 - 0.0-0.1 MW106 - 0.3-0.4	
					[F.].)		Borehole MW106 terminated at 5.5	m	-	

CLI	ENT	EN Hydro	o Alur	niniun	n Kurr	i Kurri						
DRI EQI HO	DRILLING CONTRACTOR Terratest EQUIPMENT						STARTED 1/7/14 COMPLETED 1/7/14 R.L. SURFACE NG CONTRACTOR Terratest SLOPE 90° MENT HOLE LOCATION AEC8 SIZE LOGGED BY KG					
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material D	escription	Samples Tests Remarks	Additional Observations		
	▲						ALLUVIAL FILL; Clayey SAND, fine ALLUVIAL; SAND, fine grained, blace Wet Borehole MW107 terminated at 4m		MW107 - 0.15-0.25 MW107 - 0.3-0.4			
				<u>5</u>								

BOREHOLE NUMBER SB101 PAGE 1 OF 1

	ENVIRON
CLIENT	Lludra Aluminium Kurri Kurri

	1		IN	۷I	KC	JIN			
CLI	ENT	Г Ну	dro A	lumini	um Ku	ırri Kurri	PROJECT NAME Phase	e 2 ESA	
PR	ΟJE	CT N	JMBE	R _A	S1303	83	PROJECT LOCATION _		
DA ⁻	ΓE S	START	ΓED	30/6/	14	COMPLETED 30/6/14	R.L. SURFACE		DATUM
						erratest			
HO	LE S	SIZE					LOGGED BY KG		CHECKED BY
NO.	ΓES								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio		Samples Tests Remarks	Additional Observations
			_			Aluminium Scrap on Surface. TOPSOIL; Clayey S	SAND, fine grained, brown	SB101 - 0.0-0.	1
			_			FILL; Sandy CLAY, brown, high plasticity with sor	ne gravel		
			_					SB101 - 0.3-0. DUP A	4
			0 <u>,5</u>						
			1,0			ALLUVIAL; SAND, grey, fine grained			
			_			Borehole SB101 terminated at 1m			
			_						
			1,5						
			_						
			_						
			_						

BOREHOLE NUMBER SB103

PAGE 1 OF 1

G E	ENVIRON
------------	---------

CLIENT Hydro Aluminium Kurri Kurri PROJECT										
PRO	IJΕ	CT NI	JMBE	R _A	S1303	83				
						COMPLETED _30/6/14				
HOLE SIZE							_ LOGGED BY KG		CHECKED BY	
O	ΓES	_				T			1	
Method	Water	RL (m)				Material Descrip	cription Samples Tests Remarks		Additional Observations	
T						FILL; Sandy GRAVEL, black/grown, medium g	rained with some brick	SB103 - 0.0-0	1	
			_						_	
			_							
			-	×××		ALLUVIAL; SAND, grey, fine grained		SB103 - 0.3-0	4	
			_						·- -	
			0,5							
			0, <u>3</u>			ALLUVIAL; SAND, brown/grey, fine grained		-		
			_							
			_							
			_							
			_							
			1,0			ALLUVIAL; Clayey SAND, grey, fine grained				
						Borehole SB103 terminated at 1m				
			_	_						
			_							
			_							
			1 <u>,5</u>	-						
			_							
			_							
			_	1						
			_							
			2.0							

BOREHOLE NUMBER SB104

PAGE 1 OF 1

	ENVIRON
--	---------

CLIENT Hydro Aluminium Kurri Kurri PROJECT NAME Phase										
PRO.	JEC	CT NU	IMBER	₹ _A						
DATE	E S	TART	ED _	30/6/	14	COMPLETED 30/6/14	R.L. SURFACE		DATUM	
DRIL	LIN	IG CC	NTR/	СТО	R		SLOPE 90°			
EQUI	PN	IENT	<u>Han</u>	d Aug	ger		HOLE LOCATION AEC2			
HOLE	ΞS	IZE _					LOGGED BY KG		CHECKED BY	
NOTE	ES	_						I		
Method	water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations	
			0,5			FILL; Gravelly SAND, black/some white AOS, cocrushed waste ALLUVIAL; SAND, fine grained, khaki	arse grained, AOS Anode	SB104 - 0.0-0		
			1,5			Borehole SB104 terminated at 1m				

BOREHOLE NUMBER SB105 PAGE 1 OF 1

📢 ENVIRON

ENVIRON										
CLI	ENT	<u>Hy</u>	dro A	lumini	um Ku	ırri Kurri				
PRO	ŊΕ	CT NI	JMBE	R _A	S1303	83	PROJECT LOCATION _			
DAT	TE S	STAR	ΓED _	30/6/	14	COMPLETED 30/6/14	R.L. SURFACE	ا	DATUM	
DRI	LLII	NG C	ONTR	ACTO	R		SLOPE 90°		BEARING	
							LOGGED BY KG		CHECKED BY	
NO	IES									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations	
			_			FILL; Gravelly SAND, coarse grained with some	ASO Anode crushed waste	SB105 - 0.0-0.		
			_							
			_					SB105 - 0.3-0.4	t	
			0,5			ALLUVIUM; SAND, black then grey, fine grained	1			
			_							
			_							
			1,0			Borehole SB105 terminated at 1m				
			_							
			_							
			_							
			1 <u>,5</u>							
			_							
			_							
			_							

PAGE 1 OF 1

	ENVIRON
--	---------

CLI	FNT					urri Kurri	PROJECT NAME Phase 2 ESA			
						83				
						COMPLETED 30/6/14				
HO	LE S	SIZE					LOGGED BY KG		CHECKED BY	
NO.	TES									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Additional Observations	
						FILL; Clayey GRAVEL, brown, coarse grained		SB106 - 0.0-0.	1	
			- - -			ALLUVIAL; SAND, khaki, fine grained		SB106 - 0.3-0.	4	
			0 <u>,5</u> - -							
			_							
			1,0			Borehole SB106 terminated at 1m				
			_							
			_							
			-							
			_							
			1 <u>,5</u>							
			-							
			_							
			-							

							PROJECT NAME Phase 2 ESA PROJECT LOCATION				
DATE STARTED 30/6/14 COMPLETED 30/6/14 DRILLING CONTRACTOR EQUIPMENT Hand Auger HOLE SIZE NOTES							R.L. SURFACE				
Metriod	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	iption	Samples Tests Remarks	Additional Observations		
			_			FILL; Gravelly SAND, dark brown, coarse gra ALLUVIAL; Clayey SAND, khaki, fine grained		SB107 - 0.0-0.1			
			_			ALLOVIAL, Glayey SAND, Klaki, life graffee	, mgn plasticity clay	SB107 - 0.3-0.4			
			0 <u>,5</u>								
			_								
			1,0			Borehole SB107 terminated at 1m					
			_								
			- 1 <u>,5</u>								
			_ 1 <u>,</u>								
			_								

BOREHOLE NUMBER SB108 PAGE 1 OF 1

ENVIRON

CLIE	NT	· _Ну	dro A	lumini		バ Kurri 83		ROJECT NAME Phase 2 ESA ROJECT LOCATION				
DAT	E S	TAR	ΓED _	30/6/	14	83 COMPLETED 30/6/14	R.L. SURFACE		DATUM			
EQUIPMENT Hand Auger HOLE SIZE NOTES												
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descri	otion	Samples Tests Remarks	Additional Observations			
			- 0,5 - 1,0 - 1,5 			ALLUVIUM; SAND, yellow, fine grained Borehole SB108 terminated at 1m	n some brick	SB108 - 0.0-0. DUP B SB108 - 0.3-0.	_			

Q	E	IVN	RC	N			PAGE 1 (
CLIEN	IT _Ну	dro Alumini	um Kı	ırri Kurri	PROJECT NAME Phase 2 ESA					
PROJE	ECT N	UMBER A	S1303	83	PROJECT LOCATION					
DATE	STAR	TED <u>1/7/1</u>	4	COMPLETED1/7/14	R.L. SURFACE	D/	ATUM			
DRILLING CONTRACTOR										
HOLE NOTES					LOGGED BY KG	CI	HECKED BY			
Method Water		(m) Depth (c) Craphic Log	Classification Symbol	Material Descr	iption	Samples Tests Remarks	Additional Observations			
		0,5		FILL; Gravelly SAND, coarse grained, dark grained ALLUVIAL; SAND, grey, fine grained wet Borehole SB109 terminated at 1m	rey	SB109 - 0.0-0.1				

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15

1<u>,5</u>

PAGE 1 OF 1

G E	ENVIRON
------------	---------

CLIENT Hydro Aluminium Kurri Kurri							PROJECT NAME Phase 2 ESA				
						83					
						COMPLETED 1/7/14					
HOL	.E S	SIZE					LOGGED BY KG		CHECKED BY		
NOT	ES		I								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Additional Observations		
			0,5			FILL; Sandy GRAVEL, medium grained ALLUVIAL; SAND, grey, fine grained ALLUVIAL; SAND, yellow, fine grained, moist		SB110 - 0.0-0.			
			1, <u>0</u>	<u> </u>		Wet Borehole SB110 terminated at 1m					

BOREHOLE NUMBER SB111 PAGE 1 OF 1

	ENVIRON
--	---------

CLIE	ENT	Г <u>Н</u> у	dro Al	umini		VIN rri Kurri 83					
DAT	ΈS	STAR	ΓED _	1/7/1	4	COMPLETED _1/7/14	R.L. SURFACE		DATUM		
EQUIPMENT Hand Auger HOLE SIZE NOTES							HOLE LOCATION _AEC4				
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descri	ption	Samples Tests Remarks	Additional Observations		
			- - 0 <u>.5</u> - - -			FILL; Gravelly SAND, black then brown, coars brick at 0.7m ALLUVIAL; SAND, grey, fine grained Borehole SB111 terminated at 1m	e grained with some refractory	SB111 - 0.0-0. SB111 - 0.4-0.	5		
			1,5								

BOREHOLE NUMBER SB112 PAGE 1 OF 1

	ENVIRON
--	---------

CLI	ENT	Г <u>Н</u> у	dro Al	umini		バス rri Kurri 83			
DA	TE S	STAR	TED _	1/7/1	4	COMPLETED _1/7/14	R.L. SURFACE		DATUM
DRILLING CONTRACTOR SLOPE 90° EQUIPMENT Hand Auger HOLE LOCATION AEC HOLE SIZE LOGGED BY KG NOTES							HOLE LOCATION AEC4		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	tion	Samples Tests Remarks	Additional Observations
			_			FILL; Sandy GRAVEL, khaki, medium grained		SB112 - 0.0-0.	1
			0,5			FILL; Gravelly SAND, dark brown, coarse grain	ed, with some refractory brick	SB112 - 0.4-0.	5
			_			ALLUVIAL; SAND, grey, fine grained		SB112 - 0.8-0.9 DUP C	9
						Borehole SB112 terminated at 1m			
			1 <u>,5</u>						

PAGE 1 OF 1

	ENVIRON
--	---------

CLIE	ENT	Г <u>Ну</u>	dro A	lumini	um Ku	rri Kurri			
DAT	ΈS	STAR	ΓED _	1/7/14	4	83 COMPLETED 1/7/14		DATUM	
DRILLING CONTRACTOR							HOLE LOCATION AEC4		
9	Water		Depth (m)	Graphic Log	Classification Symbol	Material Description	on	Samples Tests Remarks	Additional Observations
			-			FILL; Sandy GRAVEL, medium grained, dark brown, low plasticity		SB113 - 0.0-0	.1
			_ 0 <u>,5</u> _			FILL; Gravelly SAND, black, coarse grained		SB113 - 0.4-0	.5
			-			ALLUVIAL; SAND, grey, fine grained		SB113 - 0.8-0	9
			<u>1,0</u> _			Borehole SB113 terminated at 1m			
			- 1 <u>,5</u>						
			1 <u>,5</u>						
			_						

PAGE 1 OF 1

	ENVIRON
--	---------

CLI	ENT					ırri Kurri	PROJECT NAME Phase 2 ESA			
						83				
DA ⁻	TE S	TAR	ΓED _	1/7/14	4	COMPLETED _1/7/14	R.L. SURFACE		DATUM	
DRI	LLI	NG C	ONTR	АСТО	R		SLOPE 90°		BEARING	
							LOGGED BY KG		CHECKED BY	
NO.	TES						-			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Additional Observations	
						FILL; Gravel, with some sand		SB114 - 0.0-0	1	
			-			FILL; Gravelly CLAY, yellow, medium plasticity			_	
			- 0 <u>,5</u> - - -			ALLUVIAL; SAND, grey, fine grained		SB114 - 0.4-0.		
			_	_		Borehole SB114 terminated at 1m				
			_							
			_	-						
			_							
			1 <u>,5</u>							
			_	-						
			_							
			-							
			_							

BOREHOLE NUMBER SB115 PAGE 1 OF 1

ENVIRON	
---------	--

CLI	ENT	Г <u>Ну</u>	dro Al	umini	um Ku	JIN ırri Kurri				
PRO	IJΕ	CT N	JMBE	R _A	S1303	83	PROJECT LOCATION			
DA	E S	STAR	ΓED _			COMPLETED	R.L. SURFACE		DATUM	
DRI	LLII	NG C	ONTR	ACTO	R		SLOPE 90°		BEARING	
EQI	JIPI	MENT	_Har	nd Au	ger		HOLE LOCATION _AEC12	2		
HOI	E S	SIZE					LOGGED BY KG		CHECKED BY	
NO.	ΓES									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	on	Samples Tests Remarks	Additional Observations	
						FILL; Silty SAND, brown, fine grained		SB115 - 0.0-0.	1	
								SB115 - 0.1-0.	2	
			_			FILL; Sandy GRAVEL, coarse grained, grey				
			0,5			ALLUVIAL; Clayey SAND, orange/brown				
			_							
			1,0							
			_			Borehole SB115 terminated at 1m				
			_							
			_							
			1 <u>,5</u>							
			_							
			_							
			_							

BOREHOLE NUMBER SB116 PAGE 1 OF 1

G E	ENVIRON
------------	---------

						JIN ırri Kurri			
PR	OJE	CT N	UMBE	R _A	S1303	83	_ PROJECT LOCATION _		
DA ⁻	TE S	STAR	TED _	1/7/1	4	COMPLETED _ 1/7/14		DATUM	
DRI	LLII	NG C	ONTR	ACTO	R			BEARING	
EQ	UIPI	MENT	Har	nd Au	ger		_ HOLE LOCATION _AEC12	2	
HO	LE S	SIZE					LOGGED BY KG		CHECKED BY
NO.	TES								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	tion	Samples Tests Remarks	Additional Observations
						FILL; Clayey SAND, brown, coarse grained wit	h some gravel	SB116 - 0.0-0. DUP F	I
								SB116 - 0.1-0.2	2
			_			FILL; Clayey GRAVEL, medium grained, grey/	orown		
						Titt, Gayey Grovett, mediani granica, greyn	JOWIT		
			0,5						
						ALLUVIUM; CLAY, brown, high plasticity			
			_			,			
			1,0			Borehole SB116 terminated at 1m			
						Borefiole SB i to terminated at 1111			
			_						
			_						
			1.5						
			1 <u>,5</u>						
			-						
			-						
			-						
			-						

BOREHOLE NUMBER SB117 PAGE 1 OF 1

SENVIRON	
----------	--

	✓ ENVIRON										
CLI	ENT	Г <u>Н</u> у	dro Al	umini	um Ku	ırri Kurri	PROJECT NAME Phase	e 2 ESA	_		
PR	IJΕ	CT N	JMBE	R _A	S1303	83	PROJECT LOCATION _				
DA ⁻	TE S	TAR	ED _	2/7/14	4	COMPLETED _2/7/14	R.L. SURFACE		DATUM		
									CHECKED BY		
Method	Water		Depth (m)	hic Log	Classification Symbol	Material Descriptio		Samples Tests Remarks	Additional Observations		
				44		BITUMEN		SB117 - 0.0-0.	1		
				\bowtie		FILL; Gravelly SAND, black, coarse grained		35117 - 0.0-0.			
				\bowtie				SB117 - 0.1-0.	2		
						With some clay, grey					
			_			ALLUVIAL; Clayey SAND, fine grained, grey					
			0,5								
			-	,,,,,		Borehole SB117 terminated at 0.6m					
			_								
			-								
			=								
			1,0								
			_								
			_								
			_								
			1,5								
			-								
			_								
			_								

PAGE 1 OF 1

	ENVIRON
--	---------

CLIENT Hydro Aluminium Kurri Kurri PROJECT NUMBER AS130383							PROJECT NAME Phase 2 ESA PROJECT LOCATION				
DA DR EQ	TE S	START NG CO	TED _ ONTR Hai	2/7/14 ACTO nd Aug	4 R	COMPLETED 2/7/14	R.L. SURFACE SLOPE _90° HOLE LOCATION _AEC12	2	DATUMBEARING		
NO	TES										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations		
Me Me	Ma Ma	<u> </u>	(m)			BITUMEN FILL; Sandy GRAVEL, dark brown, fine to coars ALLUVIAL; SAND, grey, fine grained Borehole SB118 terminated at 0.3m	e grained	SB118 - 0.0-0.			
			-								

PAGE 1 OF 1

SENVIRON	
CLIENT Hydro Aluminium Kurri Kurri	PROJECT NAME Phase 2 ESA
PROJECT NUMBER AS130383	PROJECT LOCATION

DATE STARTED 1/7/14 COMPLETED 1/7/14 R.L. SURFACE DATUM

	DRILLING CONTRACTOR								
							LOGGED BY KG	c	HECKED BY
NC	TES		1						
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	on	Samples Tests Remarks	Additional Observations
			_			FILL; Silty SAND, fine grained, brown, with some	gravel at 0.35m	SB119 - 0.0-0.1	
			_					SB119 - 0.3-0.4	
			0,5			ALLUVIAL; Clayey SAND, brown, fine grained, cl	ay is high plasticity	DUP D	
			-						
			-			ALLUVIAL; SAND, yellow, fine grained			
			1,0						
			- -			Borehole SB119 terminated at 1m			
			1 <u>,5</u>						
			2,0						

PAGE 1 OF 1

SENVIRON	
CLIENT Hydro Aluminium Kurri Kurri	PROJECT NAME Phase 2 ESA
PROJECT NUMBER AS130383	PROJECT LOCATION

DATE STARTED _1/7/14 _____ COMPLETED _1/7/14 _____ R.L. SURFACE ______ DATUM ____

DRILLING CONTRACTOR SLOPE 90°							
			но				
HOLE SIZE NOTES			LO	GGED BY KG	с	HECKED BY	
Method Mater De (m) (m) (n) (n)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Additional Observations	
1			ALLUVIAL; Sandy CLAY, high plasticity, brown/yellow Borehole SB120 terminated at 1m		SB120 - 0.0-0.1 SB120 - 0.1-0.2		

	ENVIRON
OL IENIE	Libraria Alexandra Service IZ condition and

					N				
				ium Ku .S1303	rri Kurri 83				
ATE RILL	STAI	RTED CONTI	RACTO)R	COMPLETED	R.L. SURFACESLOPE _90°		DATUM	
	SIZE								
Water	RL (m		Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Additional Observations	
					FILL; Sandy GRAVEL, brown, fine to coarse grain	ned	SB121 - 0.0-0.	1	
							SB121 - 0.1-0.	2	
		0,5							
					Borehole SB121 terminated at 0.8m				
		1,0	<u> </u>						
		1,5							
			-						

BOREHOLE NUMBER SB122 PAGE 1 OF 1

G	ENVIRON
----------	---------

CLI	ENT	_ <u>Hy</u>	dro A	lumini		ノIN nri Kurri 83				
DA	TE S	STAR	TED _	1/7/1	4	COMPLETED _1/7/14	R.L. SURFACE	R.L. SURFACE		
EQI	JIPI	MENT	Haı	nd Au	ger		HOLE LOCATION AEC2	25		
NO.							LOGGED BY KG		CHECKED BY	
Method	Water		Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations	
						FILL; Clayey gravelly SAND, dark brown, coa	arse grained	SB122 - 0.0-0.	1	
			_					SB122 - 0.1-0.	2	
			_ _ 							
						ALLUVIAL; Sandy CLAY, yellow/brown/grey,	high plasticity			
			_							
			1.0							
			- -			Borehole SB122 terminated at 1m				
			1 <u>,5</u>							
			_							
			_							
			_							

BOREHOLE NUMBER SB123 PAGE 1 OF 1

G	ENVIRON
----------	---------

	CINVIRUIN DE LINVIRUIN DE LI								
						ırri Kurri			
						83			
						COMPLETED			
NO.							LOGGED BT _KG		CHECKED B1
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations
						FILL; Gravelly SAND, brown/grey, coarse grains	ed	SB123 - 0.0-0.	1
								SB123 - 0.1-0.	2
			_						
			0,5			ALLUVIAL; Sandy CLAY, orange/yellow, high pl	asticity		
			_						
			1,0			ALLUVIAL; SAND, black, coarse grained			
						Borehole SB123 terminated at 1m			
			_						
			_						
			1,5						
			., <u>v</u>						
			_						
			-						
			_						

BOREHOLE NUMBER SB124 PAGE 1 OF 1

SENVIRON

						ノハ ırri Kurri	PROJECT NAME Phas	e 2 ESA		
						83				
DA ¹ DRI	TE S	STAR	TED _	1/7/1 ACTO	4 R	COMPLETED _1/7/14	R.L. SURFACE	DATUM		
							LOGGED BY KG		CHECKED BY	
NO.	TES							T		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations	
						FILL; Sandy gravelly CLAY, brown, medium plas	ticity	SB124 - 0.0-0.	1	
								SB124 - 0.1-0.	2	
			_							
			0 <u>,5</u>			ALLUVIAL; Sandy CLAY, high plasticity, brown				
			_							
			_							
			1,0							
			_			Borehole SB124 terminated at 1m				
			_							
			_							
			1 <u>,5</u>							
			_							
			_							
			_							

BOREHOLE NUMBER SB125 PAGE 1 OF 1

	ENVIRON
A	

) N rri Kurri	PROJECT NAME Pha	se 2 ESA		
						PROJECT LOCATION			
ATE RILL QUII	STAR ING C	TED _ ONTR 「 _Ha	1/7/1 ACTO nd Au	4 R ger	COMPLETED _1/7/14	R.L. SURFACESLOPE _90°HOLE LOCATION _AEC2	25	DATUMBEARING	
TE	s								
Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	tion	Samples Tests Remarks	Additional Observations	
		_			FILL; Gravelly clayey SAND, brown, fine graine	d	SB125 - 0.0-0.	1	
		_					SB125 - 0.1-0.	2	
		_							
		_			ALLUVIAL; CLAY, high plasticity, black/orange				
		0,5							
		_							
		_							
		_							
		1,0			Borehole SB125 terminated at 1m		_		
		_							
		-							
		-							
		_	-						
		1 <u>,5</u>	_						
		_							
		-							
		-							

BOREHOLE NUMBER SB126 PAGE 1 OF 1

ENVIRON

							PROJECT NAME Phase 2 ESA PROJECT LOCATION				
					COMPLETED						
	s										
Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	cription	Samples Tests Remarks	Additional Observations			
		_			FILL; Gravelly clayey SAND, dark brown, co	arse grained	SB126 - 0.0-0.	1			
		_					SB126 - 0.2-0.	3			
		0,5			FILL; GRAVEL, coarse grained, grey						
		-			ALLUVIAL; CLAY, high plasticity, orange/gre	ry motued					
		1,0 - 1, <u>5</u>			Borehole SB126 terminated at 1m						

CLIENT Hydro Aluminium Kurri Kurri PROJECT NUMBER AS130383								PROJECT NAME Phase 2 ESA PROJECT LOCATION			
DR EQ HO	ILLII UIPI LE S	NG CO MENT SIZE	ONTR Ha	ACTO	R ger	COMPLETED1/7/14	SLOPE _90° HOLE LOCATION _AE	BEA	DATUMBEARING		
Method	Water SET		Depth	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations		
Me	Wa	(m)	(m)	**************************************	Syl	FILL; Sandy GRAVEL, brown/grey, fine to co	parse grained	SB127 - 0.0-0.1			
			-					SB127 - 0.1-0.2			
			-								
			-								
			0 <u>,5</u>			ALLUVIUM; CLAY, high plasticity, orange/gr	ey mottled	SB127 0406			
			0 <u>,5</u>					SB127 - 0.4-0.6 DUP E, DUP E1			
			-								
			_								
			_								
			1,0			Borehole SB127 terminated at 1m					
			-	-		Bole lole 3B127 terminated at 1111					
			-	_							
			-	_							
			_	_							
			1 <u>,5</u>								
			-	_							
			-	_							
			-								
			-								
		l	2,0	1				1			

CLIENT Hydro Aluminium Kurri Kurri PROJECT NAME Phase 2 ESA									1,102 1 61	
						ırri Kurri 183				
DATI DRIL EQU HOL	E S LIN IPN E S	TART NG CO MENT SIZE	TED _ ONTR Ha	2/7/14 ACTO nd Aug	4 R	COMPLETED 2/7/14	R.L. SURFACE SLOPE _90° HOLE LOCATION _AEC.	25	DATUM	
Method	Water		Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations	
		()	_			BITUMEN. FILL; Gravelly SAND, black, coarse	grained	SB128 - 0.0-0.	1	
			_			ALLUVIAL; Clayey SAND, fine grained, grey		SB128 - 0.2-0.	3	
			0 <u>,5</u>			ALLUVIAL; SAND, grey/khaki, fine grained				
			_ _ _							
			1,0			ALLUVIAL; CLAY, grey, high plasticity				
			_ _ _			Borehole SB128 terminated at 1m				
			1 <u>,5</u>							
			_							

ENVIRON	

				ninium Ku AS1303	ırri Kurri 883				
					COMPLETED 2/7/14				
LE	S	IZE _				LOGGED BY KG		CHECKED BY	
TE	S				T		<u> </u>		
Water	Water	RL (m)	Depth (m)	Classification Symbol	Material Desc	iption	Samples Tests Remarks	Additional Observations	
					BITUMEN. FILL; Gravelly SAND, dark brown	ı, coarse grained	SB129 - 0.0-0	.1	
					FILL; Gravelly clayey SAND, brown		SB129 - 0.1-0.	.2	
			0,5		FILL; Gravelly SAND, dark brown, coarse gra	ined	SB129 - 0.9-1	0	
			1,5						

BOREHOLE NUMBER SB130 PAGE 1 OF 1

C E	NVIRON
-----	--------

		E	N	VI	RC	N			.,,,,,	
							PROJECT NAME Phase 2 ESA PROJECT LOCATION			
DAT DRI EQI	TE S LLII JIPI	STAR [*] NG CO	TED _ ONTR	2/7/14 ACTO nd Aug	1 R	COMPLETED 2/7/14	R.L. SURFACE	5	DATUMBEARING	
NO.								_		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	on	Samples Tests Remarks	Additional Observations	
			1,0			CONCRETE. REFUSAL ON CONCRETE Borehole SB130 terminated at 0m				
			_							

BOREHOLE NUMBER SB131 PAGE 1 OF 1

	ENVIF	RON
--	-------	-----

) t	=17	۷I	KC)N				
					ırri Kurri				
						PROJECT LOCATION _			
					COMPLETED _2/7/14				
								CHECKED BY	
								OHEORED BT	
Method Mater		_ Depth	ohic Log	Classification Symbol	Material Description		Samples Tests Remarks	Additional Observations	
		-			BITUMEN. FILL; Gravelly SAND, black, coarse of	grained	SB131 - 0.0-0.	1	
		-			ALLUVIAL; SAND, grey/fine grained		SB131 - 0.3-0. DUP G	4	
		0, <u>5</u>							
		- 1.0			ALLUVIAL; Sandy CLAY, high plasticity, grey ALLUVIAL; SAND, yellow, fine grained				
		- - 1,5			Borehole SB131 terminated at 1m				

LIENT Hydro Alumini		PROJECT NAME PROJECT LOCAT	Phase 2 ESA	
RILLING CONTRACTO	DR	2 2/7/14 R.L. SURFACE	BEA	ARING
		HOLE LOCATION LOGGED BY KG		
Water RT (W) (W) (Debth (M) (Braphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Additional Observations
0,5		elasticity, grey, with some sand	SB132 - 0.0-0.1	

BOREHOLE NUMBER SB133 PAGE 1 OF 1

ENVIRON
ENVIRON

			IV	۷I	KC)N			
CLI	ENT	Г _Ну	dro A	lumini	um Ku	rri Kurri	PROJECT NAME Phase	e 2 ESA	
PR	ΟJE	CT N	JMBE	R _A	S1303	83	PROJECT LOCATION _		
DA ⁻	TE S	START	ΓED _	2/7/1	4	COMPLETED 2/7/14	R.L. SURFACE		DATUM
							LOGGED BY KG		CHECKED BY
NO.	TES		ı	<u> </u>					
Method	Water	RL (m)	Depth (m)	9	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations
			_	00000		BITUMEN; NO RECOVERY			
			_			ALLUVIAL; CLAY, high plasticity, grey		SB133 - 0.2-0.	3
			_			ALLUVIAL; SAND, coarse grained, yellow		SB133 - 0.3-0. DUP H, DUP H1	4
			0,5						
			_						
			1,0						
			1,0			Borehole SB133 terminated at 1m			
			_						
			_						
			_						
			_						
			1 <u>,5</u>						
			_	1					
			_						
			-	-					

SENVIRON		PAGE 1 OF
CLIENT Hydro Aluminium Kurri Kurri	PROJECT NAME Phase 2 ESA	
PROJECT NUMBER AS130383	PROJECT LOCATION	
DATE STARTED _2/7/14 COMPLETED _2/7/14	R.L. SURFACE DATUM _	
DRILLING CONTRACTOR	SLOPE 90° BEARING	

DR	DRILLING CONTRACTOR				R		SLOPE 90°	BI	Earing
EQ	EQUIPMENT Hand Auger				ger		HOLE LOCATION AEC2	25	
но	LE S	SIZE					LOGGED BY KG	CI	HECKED BY
NO	TES								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Additional Observations
			_			BITUMEN. FILL; Gravelly SAND, black, coarse g ALLUVIAL; CLAY, high plasticity, orange/grey mc		SB134 - 0.0-0.1	
			_					SB134 - 0.2-0.3	
			_						
			0,5						
			_						
			_						
			_						
			1,0			Borehole SB134 terminated at 1m			
			_						
			-	_					
			1 <u>,5</u>						
			_						
			_						
			_						
			2,0						

BOREHOLE NUMBER SB135 PAGE 1 OF 1

	ENVIRON
--	---------

							PROJECT NAME Phase 2 ESA			
ROJ	ECT N	UMBE	R _A	S1303	83	PROJECT LOCATIO				
DATE STARTED 2/7/14 COMPLETED 2/7/14 DRILLING CONTRACTOR										
	SIZE					LOGGED BY _KG		CHECKED BY		
Water		Depth	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations		
>	(m)	(m)	ω XXXX	ပတ	BITUMEN. FILL; Gravelly SAND, black, coa	rse grained				
					, , ,	· ·	SB135 - 0.0-0.	1		
		-			Grading to grey/black		SB135 - 0.1-0	2		
		-								
		-			Very black		SB135 - 0.3-0.	4		
		-			FILL; CLAY, high plasticity, orange/grey mot	tled		_		
		0,5								
		0,0								
		-								
		_								
		_								
		_								
		1,0			Borehole SB135 terminated at 1m					
					Bolonolo ob roo terminatoa at mi					
		-								
		-								
		-								
		-								
		1,5								
		_								
		_								
		-								
		-								

CL	IENT	Г <u>Н</u> у	dro A	umini	RC	rri Kur	ri	PROJECT NAME Phas	e 2 ESA	PIT NUMBER TP101 PAGE 1 OF 1
DA EX EQ TE	PROJECT NUMBER _AS130383 DATE STARTED _23/6/14						COMPLETED 26/6/14	SLOPE TEST PIT LOCATION _AE LOGGED BY _KW	DATUMBEARING	
Method	Water		Depth (m)	Graphic Log	Classification Symbol		Material Descript		Samples Tests Remarks	Additional Observations
			- -			FILL; S	Silty SAND; brown and grey with cobbles,	small with grass roots, no odour	TP101 - 0.2-0.3m	

NATURAL; CLAY; orange/red/grey mottle, no odour

Borehole TP101 terminated at 0.6m

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15

1,0

1,5

TEST PIT NUMBER TP102

G	ENVIRON
----------	---------

ENVIRON										
CLIENT Hydro Aluminium Kurri Kurri PROJECT N										
PROJECT NUMBER <u>AS130383</u> DATE STARTED <u>23/6/14</u> COMPLETED <u>23/6/14</u>										
						COMPLETED <u>23/6/14</u>				
ΞQI	JIPI	MENT	Bac	ckhoe			TEST PIT LOCATION AE	C28		
			ZE				LOGGED BY KW		CHECKED BY	
NOTES										
Method	Water	RL (m)		Graphic Log	Classification Symbol	Material Description	on	Samples Tests Remarks	Additional Observations	
			_			FILL; Silty SAND; brown with grass roots, no odd	ur			
			_			As above; orange, no odour		TP102 - 0.3-0.4m		
			0,5					0.0 0.1111		
			- 0 <u>,5</u>			NATURAL; CLAY; orange/red/grey mottle, no od	our			
			_			Borehole TP102 terminated at 0.7m				
			1, <u>0</u>							
			_							
			_							
			_							
			1 <u>,5</u>							
			_							
			_							

TEST PIT NUMBER TP103 PAGE 1 OF 1

ENVIRON	

ENVIRON CLIENT Hydro Aluminium Kurri Kurri PROJECT NAME PROJECT NOMBER AS130383 PROJECT LOCATIO										
							PROJECT NAME Phase 2 ESA			
DATI EXC EQU EST	E S AV/ IPM T PI	TART ATIOI MENT IT SIZ	TED _: N CON Bac	23/6/ TRAC	TOR	COMPLETED 23/6/14 R.L. SLC TES	R.L. SURFACESLOPE TEST PIT LOCATION _AEC28		DATUMBEARING	
Method	Water		Depth (m)	Classification Waterial Description (until the public Road of the publ				Samples Tests Remarks	Additional Observations	
			0,5			FILL; Silty SAND; brown and grey with cobbles, small w	ith grass roots, no odour	TP103 - 0.2-0.4m		
						Borehole TP103 terminated at 0.6m				
			1,0							
			-							
			1 <u>,5</u>							
			-							

TEST PIT NUMBER TP104 PAGE 1 OF 1

SENVIRON	
----------	--

CLIENT Hydro Aluminium Kurri Kurri PROJECT NUMBER AS130383							PROJECT NAME _ Phase 2 ESA			
						COMPLETED 23/6/14				
						CONFLETED 23/0/14				
NOT										
Method	Water	RL Depth (m) (m) (N) (N) (N) (N) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M			Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations	
			_			FILL; Silty Sandy CLAY; orange/grey/red mottle odour FILL; Silty SAND; black grey, no odour	with gravel, small-medium, no	TP104 - 0.0-0.2M		
			0,5					TP104 -		
			_					0.5-0.6m		
			_			As above; orange, with gravel, medium, no odou	ır	TP104 - 0.7-0.9m		
			1, <u>0</u>			Silty SAND; yellow				
						Borehole TP104 terminated at 1.5m				

TEST PIT NUMBER TP105

PAGE 1 OF 1

G	ENVIRON
----------	---------

						JIN	PROJECT NAME Phase 2 ESA			
1						ırri Kurri 83				
DAT	PROJECT NUMBER AS130383 DATE STARTED 23/6/14 COMPLETED 23/6/14						_ R.L. SURFACE	DATUM		
1										
			<u>Bac</u>							
NO			<u></u>				_ LOGGED BY _KW		CHECKED BY	
7	Water		Depth (m)	Graphic Log	Classification Symbol	Material Descrip	tion	Samples Tests Remarks	Additional Observations	
	wa wa		0.5			FILL; Silty sandy CLAY; orange/grey/red mottle odour FILL; Silty SAND; black grey, no odour	with gravel, small-medium, no	TP105 - 0.5-0.6M		
			1, <u>0</u>			NATURAL; silty SAND; yellow Borehole TP105 terminated at 1.1m				

		E	N	VI	RC)N			TEST P	IT NUMBER TP10 PAGE 1 OF
CLIENT Hydro Aluminium Kurri Kurri PROJECT NUMBER AS130383										
										DATUM
										BEARING
				ckhoe				TEST PIT LOCATION _A		
TE	ST P	PIT SIZ	ZE _					LOGGED BY KW		CHECKED BY
NO	TES	<u> </u>								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol		Material Descr	ription	Samples Tests Remarks	Additional Observations
			- 0, <u>5</u> - 1, <u>0</u>			FILL; Silty SAND; brown at NATURAL; CLAY; orange/	red/grey mottle, no	es, small, with grass roots, no odour	TP106 - 0.7-0.8m	
			- 1 <u>,5</u>							
			-							

	E	ΞN	VI	RC	N		TEST F	PIT NUMBER TP10 PAGE 1 OF	
PROJECT NUMBER _AS130383 DATE STARTED _23/6/14 COMPLETED _23/6/14 EXCAVATION CONTRACTOR				14 CTOR	COMPLETED 23/6/14	R.L. SURFACE		DATUMBEARING	
TEST		ZE _				LOGGED BY KW			
Method	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations	
		- 0 <u>,5</u>			NATURAL; CLAY; orange/red/grey mottle, no	o odour	TP107 - 0.5-0.6m		
		1,0			Borehole TP107 terminated at 0.7m				

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/1

1,5

CLIENT _PROJECT	Hydro /	Alumini	ium Ku	ırri Kurri	TEST PIT NUMBER TP PAGE 1 PROJECT NAME Phase 2 ESA PROJECT LOCATION			
DATE STARTED 23/6/14 COMPLETED 23/6/14 EXCAVATION CONTRACTOR EQUIPMENT Backhoe TEST PIT SIZE					SLOPE TEST PIT LOCATION AE	C28	BEARING	
OTES _								
	RL Dept		Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations	
		-		FILL; silty SAND; brown and grey with cobble	es, small, with grass roots, no odour	TP108 -		
	0.5			NATURAL; CLAY; orange/red/grey mottle, n	o odour	0.3-0.4m		

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15

1,0

1,5

							PROJECT NAME Phase 2 ESA PROJECT LOCATION			
EX(ATE STARTED 23/6/14 COMPLETED 23/6/14 EXCAVATION CONTRACTOR COUPMENT Backhoe				TOR		_ SLOPE		BEARING	
TEST PIT SIZE							LOGGED BY KW CHECKED BY			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	iption	Samples Tests Remarks	Additional Observations	
			_			FILL; silty SAND; brown and grey with cobble	s, small, with grass roots, no odour	TP109 - 0.0-0.2m		
			-			NATURAL; CLAY; orange/red/grey mottle, no	o odour			
			0 <u>,5</u>							
						Borehole TP109 terminated at 0.7m				
			-							
			-							
			1 <u>,0</u>							
			-							
			_							
			_							
			1, <u>5</u>							
			-							
			_							
			-							
			_							

TEST PIT NUMBER TP110 PAGE 1 OF 1

S EN	VIRON
------	-------

CLII	ENT	Hy	dro Al	umini	um Ku	rri Kurri				
DAT	ΈS	TAR	TED _	23/6/	14	83	R.L. SURFACE	t	DATUM	
EQI	JIPI T P	MENT IT SIZ	Bac	khoe			TEST PIT LOCATION _AEC28 LOGGED BY KW			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	on	Samples Tests Remarks	Additional Observations	
			0,5			yellow NATURAL; Sandy CLAY Borehole TP110 terminated at 1.3m	mall, with grass roots	TP110 - 0.7-0.9m		
			1 <u>,5</u>							

	ENVIRON		
CLIENT	Hydro Aluminium Kurri Kurri	PRO	JE

Remarks Rema	C	E	N	VI	RC	N			PAGE 1 OF 1
DATE STARTED 29/6/14 COMPLETED 29/6/14 RL SURFACE BEARING							PROJECT NAME	Phase 2 ESA	
EQUIPMENT Backhoe TEST PTI SIZE LOGGED BY KW CHECKED BY NOTES Note	PROJ	ECT N	UMBE	R _A	S1303	83	PROJECT LOCAT	TON	
EQUIPMENT Backhoe TEST PTI SIZE LOGGED BY KW CHECKED BY NOTES Note	DATE	STAR	TED	23/6/	14	COMPLETED 23/6/14	R.L. SURFACE		DATUM
EQUIPMENT Backhoe TEST PTI SIZE LOGGED BY KW OHECKED BY NOTES Natural Description Remarks Additional Observation Fill.: silly clay with gravet, small, and bricks (orange), no odour NATURAL: Silly SAND, brown, grey to 0.5m, no odour Orangelyellow at 0.5-1.6m TP111- 0.5-0.6m									
NOTES Variable Va									
Natural Communication Natu	TEST	PIT SI	ZE _				LOGGED BY KW		CHECKED BY
PILL; sitly clay with gravel, small, and bricks (orange), no odour TP1111 - 0.0-0.3m NATURAL; Sitly SAND; brown, grey to 0.5m, no odour Orangelyellow at 0.5-1.6m TP1111 - 0.5-0.8m	NOTE	s							
NATURAL, Silty SAND; brown, grey to 0.5m, no odour Orange/yellow at 0.5-1.6m TP111-0.5-9.6m	Method	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	iption	Tests	Additional Observations
						NATURAL; Silty SAND; brown, grey to 0.5m,		0.0-0.3n	

♥ ENVIRON		PAGE 1 OF
CLIENT Hydro Aluminium Kurri Kurri	PROJECT NAME Phase 2 ESA	
PROJECT NUMBER AS130383	PROJECT LOCATION	
DATE STARTED _23/6/14	R.L. SURFACE D	ATUM
EXCAVATION CONTRACTOR	SLOPE B	EARING

EX(CAV JIPI	ATIO MENT	N COI	NTRA(CTOR	COMPLETED _23/6/14	SLOPE TEST PIT LOCATION _A	EC28	EARING
	ST P TES		ZE				LOGGED BY KW	Cŀ	HECKED BY
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	iption	Samples Tests Remarks	Additional Observations
			- - 0, <u>5</u> - - 1, <u>0</u>			FILL; sandy CLAY with gravel, small, no odor Silty SAND; brown, grey to 0.5m, no odour, orange/yellow 0.5-1.3m		TP12 - 0.0-0.3m	
			1,5			Borehole TP112 terminated at 1.3m			

PAGE 1 OF 1

SENVIRON	
CLIENT Hydro Aluminium Kurri Kurri	PROJECT NAME Phase 2 ESA
PROJECT NUMBER AS130383	PROJECT LOCATION

EXCAVATION CONTRACTOR ______ SLOPE _--- BEARING _---

 DATE STARTED
 23/6/14
 COMPLETED
 23/6/14
 R.L. SURFACE
 DATUM

						TEST PIT LOCATION _A			
			ZE			LOGGED BY KW	LOGGED BY KW CHECKED BY		
NC	TES		1	1					
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Additional Observations	
				7. 1/Z		TOPSOIL; Silty SAND; topsoil with grass roots, brown			
			_	12 31/2		NATURAL; Sandy CLAY; grey/red/orange mottled			
						TVATORAL, Salidy CLAT, grey/red/orange motiled			
			-						
			_						
			_				TP113 -		
			0,5				0.4-0.5m		
			_						
			_						
			_						
						Borehole TP113 terminated at 0.9m	_		
			1,0						
			-						
			_						
			-						
			_						
			1 <u>,5</u>						
			1, <u>3</u>						
			-						
			_						
			-						
			2,0						

TEST PIT NUMBER TP114 PAGE 1 OF 1

	ENVIRON
--	---------

			IN	۷I	KC)N				
						rri Kurri				
						83				
						COMPLETED _23/6/14				
NO.	ΓES									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	n	Samples Tests Remarks	Additional Observations	
				1/ 7/1/ 2/1/2 7		TOPSOIL; Silty SAND; with grass roots, brown				
			_ _ _			NATURAL; Sandy CLAY; grey/red/orange mottled				
			0 <u>.5</u> -					TP114 - 0.5-0.6m		
			_	7 8 7 7		Borehole TP114 terminated at 0.8m				
			1 <u>,0</u>							
			-							
			_							
			_							
			1 <u>,5</u>							
			_							
			_							
			_							

	E	ΞN	VI	RC	DN		TEST I	PIT NUMBER TP115 PAGE 1 OF 1
CLIEN.	т _Ну	dro A	lumini	ium Ku	rri Kurri	PROJECT NAME Phas	e 2 ESA	
PROJE	ECT N	UMBE	R _A	S1303	83	PROJECT LOCATION _		
DATE STARTED 23/6/14 COMPLETED 23/6/14 EXCAVATION CONTRACTOR EQUIPMENT Backhoe						SLOPE	DATUMBEARING	
TEST I		ZE				LOGGED BY KW		CHECKED BY
Method Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descri	otion	Samples Tests Remarks	Additional Observations
			<u>1</u> / <u>1</u> / 1		TOPSOIL; Silty SAND; with grass roots, brown	1		

NATURAL; Sandy CLAY; grey/red/orange mottled TP115 -0.4-0.5m, QA1 Borehole TP115 terminated at 0.9m 1,0 1<u>,5</u>

PAGE 1 OF 1

C	ENVIRON
----------	----------------

CLIENT Hydro Aluminium Kurri Kurri PROJECT NAME Phase 2 ESA										
						83				
						COMPLETED 23/6/14				
TES	T P	IT SIZ	ZE				LOGGED BY KW		CHECKED BY	
NO.	ΓES							I		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	on	Samples Tests Remarks	Additional Observations	
						FILL; Silty SAND; dark brown, no odour				
			_							
						FILL; slag, black, no odour, PVC pipe (irrigation)				
			_					TP116 - 0.1-0.3m		
			-			FILL; sandy CLAY; orange/grey mottle, broken co	eramic pipe, small concrete			
			_ 0 <u>,5</u>			pieces				
			_					TP116 - 0.5-0.7m		
			_	\bowtie		NATURAL; SAND; light yellow				
			_							
			_							
			1,0							
						NATURAL; sandy CLAY; mottled orange/grey, no	o odour			
			_							
				11/6		Borehole TP116 terminated at 1.3m		-		
			1 <u>,5</u>							
			_							
			_							
			_							
			_							

TEST PIT NUMBER TP117 PAGE 1 OF 1

SENVIRON	
----------	--

) t		۷I	KC)N				
					ırri Kurri				
					83	PROJECT LOCATION _			
					COMPLETED 25/6/14				
NOTE	:s								
Method		Depth	hic Log	Classification Symbol	Material Descriptio		Samples Tests Remarks	Additional Observations	
		- 0, <u>5</u> - 1, <u>0</u>			FILL; silty sand, brown/black with small cobbles a pieces, old steel cable, refractory brick, metal she reinforcement, plastic sheeting	nd gravel, large concrete et (corrugated), metal	TP117 - 0.5-0.6m		
		- 1,5			NATURAL SAND; light brown NATURAL Sandy CLAY; yellow/red/grey mottle, s Borehole TP117 terminated at 1.5m	tiff			

PAGE 1 OF 1

	ENVIRON	
CLIENT	Hydro Aluminium Kurri Kurri	PROJECT NAM

CLIENT Hydro Aluminium Kurri Kurri	PROJECT NAME Phase 2 ESA				
PROJECT NUMBER AS130383	PROJECT LOCATION				
DATE STARTED 25/6/14 COMPLETED 25/6/14	R.L. SURFACE	DATUM			
EXCAVATION CONTRACTOR	_ SLOPE	BEARING			
EQUIPMENT Backhoe	_ TEST PIT LOCATION _AEC29				
TEST PIT SIZE	LOGGED BY KW	CHECKED BY			
NOTES					

						TEST PIT LOCA		_ BEARING
			ZE			LOGGED BY	KW	CHECKED BY
NC	TES							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Additional Observations
			-			FILL; silty SAND; brown, large concrete pieces, metal strips, old timbe fence post, broken glass, refractory brick (small piece)	er, metal	
			0 <u>,5</u>				TP118 - 0.5-0.6m	
			1, <u>0</u>			NATURAL; Sandy CLAY; yellow, red, grey mottle, stiff, no odour		
			1 <u>,5</u>			Borehole TP118 terminated at 1.3m		
			2,0					

ELIENT H	ydro A	lumini	um Ku	ırri Kurri P	PROJECT NAME Phase 2 ESA PROJECT LOCATION			
				COMPLETED 25/6/14 R.I				
				3E				
	ZE _			LO	GGED BY KW		CHECKED BY	
Mater (m) (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Additional Observations	
	0,5			electrical wire, metal reinforcement, large concrete pie		TP119 - 0.5-0.6m		
	1, <u>5</u>			Borehole TP119 terminated at 1.4m				

TEST PIT NUMBER TP120 PAGE 1 OF 1

SENVIRON	
----------	--

)	:IN	۷I	KC)N			
CLIE	IT <u>Н</u>	ydro A	lumini	um Ku	ırri Kurri	PROJECT NAME Phase	e 2 ESA	
PROJ	ECT N	UMBE	R _A	S1303	83	PROJECT LOCATION _		
	ATE STARTED _25/6/14					DATUM		
EXCAVATION CONTRACTOR SLOPE								BEARING
TEST PIT SIZE LOGGED BY _KW								CHECKED BY
	S							CHECKED BY
Method		Depth	hic Log	Classification Symbol	Material Description		Samples Tests Remarks	Additional Observations
		0,5			FILL; silty SAND; yellow with cobbles and gravel (timber pieces, refractory bricks, metal reinforcement brown at 0.3m, no odour NATURAL; sandy CLAY; mottled yellow, grey, red	nt, concrete pieces	TP120 - 0.5-0.6m	
		1,5			Borehole TP120 terminated at 1.1m			

PAGE 1 OF 1

SENVIRON	
CLIENT Hydro Aluminium Kurri Kurri	PROJECT NAME Phase 2 ES
PROJECT NUMBER AS130383	PROJECT LOCATION

DATE STARTED 25/6/14 COMPLETED 25/6/14 R.L. SURFACE DATUM EXCAVATION CONTRACTOR SLOPE _---BEARING _---

									BEARING
EQUI	IPN	PMENT Backhoe TEST PIT LOCATION		EST PIT LOCATION AE					
TEST PIT SIZE								CHECKED BY	
NOTES									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Additional Observations
		(m)	(m) 0,5 1,0			FILL; silty SAND; brown with grass roots and tree till NATURAL; sandy CLAY; mottled yellow, red, grey,		TP121 - 0.5-0.6m	
			1 <u>,5</u>						

CLIEN	IT _H	dro A	lumini	um Ku	N rri Kurri 83		se 2 ESA	PIT NUMBER TP12 PAGE 1 OF	
DATE STARTED _25/6/14 COMPLETED _25/6/14 EXCAVATION CONTRACTOR						SLOPE TEST PIT LOCATION _A LOGGED BY _KW	EC29	BEARING	
Method	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations	
		- - 0, <u>5</u> - -			NATURAL; sandy CLAY; mottled yellow, red, Borehole TP122 terminated at 0.9m	grey, stiff, no odour	TP122 - 0.5-0.6m		

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_26_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15

1,5

S ENVIRON		PAGE 1 OF
CLIENT Hydro Aluminium Kurri Kurri	PROJECT NAME Phase 2 ESA	
PROJECT NUMBER AS130383	PROJECT LOCATION	
DATE STARTED 25/6/14 COMPLETED 25/6/14	R.L. SURFACE DATUM	
EXCAVATION CONTRACTOR	SLOPE BEARING	

EQUIPMENT Backhoe TEST PIT LOCATION AEC29 LOGGED BY KW CHECKED BY TEST PIT SIZE _ **NOTES** Classification Symbol Graphic Log Samples Material Description Tests Additional Observations Method Remarks RL (m) Depth (m) $\mbox{FILL};$ sity SAND; brown with charcoal refractory brick piece sighted, old tree timber pieces, no odour TP123 -0.5-0.6m 1,5 NATURAL; sandy CLAY; mottled yellow, red, grey, stiff, no odour Borehole TP123 terminated at 1.9m

TEST PIT NUMBER TP124 PAGE 1 OF 1

SIVIROI 🗘	٧
-----------	---

PROJECT NUMBER			2 5 5 4	DPO IECT NAME Dhase)N						
DATUM STARTED 25/6/14 COMPLETED 25/6/14 R.L. SURFACE SLOPE BEARING EQUIPMENT Backhoe TEST PIT SIZE LOGGED BY KW CHECKED BY LOGGED BY LOGGED BY KW CHECKED BY LOGGED BY L	PROJECT NAME Phase 2 ESA PROJECT LOCATION											
NOTES Polyth Pol	DATUMBEARING			R.L. SURFACE SLOPE TEST PIT LOCATION _AEC29		DATE STARTED 25/6/14 COMPLETED 25/6/14 EXCAVATION CONTRACTOR EQUIPMENT Backhoe						
FILL; silty SAND, yellow/brown with small-medium gravel and cobbles and stag type material (black) and small concrete pieces, no odour TP124 - 0.5-0.8m NATURAL; sandy CLAY; mottled yellow, red, grey, stiff, no odour		CHECKED BY		LOGGED BY KW					.E			
FILL; silty SAND, yellow/brown with small-medium gravel and cobbles and slag type material (black) and small concrete pieces, no odour TP124 - 0.5-0.6m NATURAL; sandy CLAY; mottled yellow, red, grey, stiff, no odour	bservations	Additional Observ	Tests	on			Water	Method				
1,5				no odour -	Y; mottled yellow, red, g	NATURAL; sandy CL			0,5		We We	WE WE

PAGE 1 OF 1

4	ENVIRON		
CLIENT	Hydro Aluminium Kurri Kurri	PROJECT NAME	Phase 2

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15

2 ESA PROJECT LOCATION PROJECT NUMBER AS130383
 DATE STARTED
 25/6/14
 COMPLETED
 25/6/14
 R.L. SURFACE
 DATUM
 EXCAVATION CONTRACTOR ___ SLOPE --- BEARING ---
 EQUIPMENT
 Backhoe
 TEST PIT LOCATION
 AEC29
 LOGGED BY KW CHECKED BY TEST PIT SIZE _ **NOTES** Classification Symbol Graphic Log Samples Material Description Additional Observations Tests Remarks RL Depth (m) FILL; silty SAND; brown, with small-medium gravel and cobbles and some metal sheet, no odour TP125 -0.5-0.6m NATURAL; sandy CLAY; mottled yellow, red, grey, stiff, no odour Borehole TP125 terminated at 1.3m 1,5

TEST PIT NUMBER TP126 PAGE 1 OF 1

SENVIRON

	ENT	<u>Н</u> у	dro Al	umini	um Ku	rri Kurri					
DAT	ROJECT NUMBER _AS130383 PROJECT LOCATION _ ATE STARTED _25/6/14 COMPLETED _25/6/14 R.L. SURFACE XCAVATION CONTRACTOR SLOPE										
EQI	JIPI	MENT	Bac	khoe			TEST PIT LOCATION AE	C29			
NO	ΓES										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Additional Observations		
			0,5			FILL; silty SAND; brown with cobbles and gravel, pieces, metal reinforcement, metal sheet, refractor of the state of the s	ny brick, no odour	TP126 - 0.5-0.6m			
			- 1, <u>5</u> -								

TEST PIT NUMBER TP127 PAGE 1 OF 1

ENVIRON

		E	N'	VI	RC	N			.,,,,,	
							PROJECT NAME Phase 2 ESA PROJECT LOCATION			
PROJECT NUMBER AS130383 DATE STARTED 25/6/14 COMPLETED 25/6/14 EXCAVATION CONTRACTOR							R.L. SURFACE		DATUM	
EQU	EQUIPMENT Backhoe TEST PIT LOCATION AEC29							EC29		
TEST			Έ <u></u>				LOGGED BY KW		CHECKED BY	
Q	in in	RL	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations	
	M	(m)	(m) - - 0,5		3.6	FILL; silty SAND; brown/yellow with metal cable,		TP127 - 0.5-0.6m		
			1 <u>,5</u>			Borehole TP127 terminated at 1.4m				

TEST PIT NUMBER TP128 PAGE 1 OF 1

C E	NVIRON
-----	--------

		E	N	۷I	KC)N			
CLII	ENT	- <u>Ну</u>	dro A	lumini	um Ku	ırri Kurri	PROJECT NAME Phase	e 2 ESA	
PRO	JΕ	CT N	JMBE	R _A	S1303	83	PROJECT LOCATION _		
DATE STARTED 25/6/14 COMPLETED 25/6/14 R.L. SURFACE									
			FION CONTRACTOR SLOPE BEARING ENT Backhoe TEST PIT LOCATION AEC31						
q	Water		Depth (m)	hic Log	Classification Symbol	Material Description		Samples Tests Remarks	Additional Observations
						FILL; silty SAND; brown, with gravel		TP128 - 0.0n	
			_			FILL; gravelly sandy CLAY		TP128 - 0.1-0.2m	
			_					TP128 - 0.2-0.3m	
			_			NATURAL; sandy CLAY			
			_					TP128 -	
			0,5					0.4-0.5m	
			_						
			_						
			-						
						Borehole TP128 terminated at 0.9m			
			1,0						
			_						
			_						
			_						
			_						
			1 <u>,5</u>						
			_						
			_						
			_						
			_						

1	3	E	N	VI	RC	DN		TEST F	PIT NUMBER TP12 PAGE 1 OF
							PROJECT NAME Phase	se 2 ESA	
PR	OJE	CT NI	JMBE	R _A	S1303	883	PROJECT LOCATION _		
DA	TE S	TAR	ΓED .	25/6/	14	COMPLETED 25/6/14	R.L. SURFACE		DATUM
							LOGGED BY KW		CHECKED BY
NO	TES							<u> </u>	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	ption	Samples Tests Remarks	Additional Observations
						FILL; gravelly silty CLAY with metal reinforcen	nent		
			_					TP129 - 0.0-0.3m	
			0, <u>5</u>			NATURAL; CLAY; red/grey mottle, moist, stiff		_	
			_					TP129 - 0.6-0.7m	
			_						
			-						
			1,0			Borehole TP129 terminated at 1m			
			_						
			_						
			-						
			1 <u>,5</u>						
			-						
			-						
			_						
			-	-					
			2,0						

						rri Kurri 83	PROJECT NAME Phase PROJECT LOCATION		
DATI EXC	E ST	TART ATIOI	LED _	25/6/ ⁻	14 CTOR	COMPLETED 25/6/14	R.L. SURFACE		DATUMBEARING
	ΓPI	T SIZ							
Wethod	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
			-			FILL; silty SAND; brown with small-medium g aluminium	ravel, no odour, medium pieces of	TP130 - 0.0-0.3m	
			0 <u>,5</u>			NATURAL; CLAY; orange/grey mottled, no o	dour		
			-					TP130 - 0.6-0.7m	
			1,0			Borehole TP130 terminated at 1m			

PAGE 1 OF 1

S ENVIRON	
CLIENT Hydro Aluminium Kurri Kurri	PROJECT NAME Phase 2 ESA
PROJECT NUMBER AS130383	PROJECT LOCATION

DATE STARTED 26/6/14 COMPLETED 26/6/14 R.L. SURFACE DATUM

EXCAVATION CONTRACTOR SLOPE --- BEARING --
EQUIPMENT Backhoe TEST PIT LOCATION AEC29

						SLOPI			BEARING		
EQl	UIPN	MENT	Bac	ckhoe		TEST	PIT LOCATION AEC29				
ΓES	ST P	IT SIZ	ZE			LOGG	ED BY KW		_ CHECKED BY		
	TES										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Te	nples ests narks	Additional Observations		
_		(111)	(111)	XXX	0 07	FILL; gravelly silty SAND and sandy CLAY; very compacte	ed with metal scrap,				
				\bowtie		tree roots, no odour	.,				
			-	\bowtie							
				\bowtie				D404			
			-					P131 - 1-0.3m			
				\bowtie							
			-			NATURAL; sandy CLAY; grey/orange mottled, no odour					
			0,5								
								P131 -			
			_				0.	5-0.6m			
			_								
			-								
				1.77772		Borehole TP131 terminated at 0.9m					
			1,0								
			1,0								
			_								
			_								
			-								
			1 <u>,5</u>								
			-								
			-								
			-								
			-								
			2,0								

TEST PIT NUMBER TP132 PAGE 1 OF 1

C	ENVIRON
----------	---------

						JIN ırri Kurri			
PR	OJE	CT N	UMBE	R _A	S1303	83	PROJECT LOCATION _		
							R.L. SURFACE DATUM		
EX	CAV	ATIO	N CO	NTRA	CTOR		SLOPE		BEARING
TES	ST P	IT SIZ	ZE				LOGGED BY KW		CHECKED BY
NO	TES							1	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations
						FILL; gravelly silty SAND and sandy CLAY; very tree roots, with coal and road tar, slight hydrocal	compacted with metal scrap, bon odour		
			_					TP132 - 0.1-0.2m	
			_					TP132 - 0.2-0.3m	
			_			NATURAL; sandy CLAY; grey/orange mottled, s	trong hydrocarbon odour		
			0,5					TP132 - 0.4-0.5m	
			0,3						
			_						
			_						
			_					TP132 - 0.8-0.9m	
				.,,,,,,		Borehole TP132 terminated at 0.9m			
			1,0						
			_						
			_						
			_						
			_						
			1 <u>,5</u>						
			_						
			_						
			_						
			_						

						rri Kurri 83			
						COMPLETED 26/6/14			
			ZE				LOGGED BY KW		CHECKED BY
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	ption	Samples Tests Remarks	Additional Observations
		(,	()			FILL; silty SAND; brown with gravel, no odour			
			_					TP133 - 0.1-0.2m	
			_			NATURAL; CLAY; grey/red mottled, moist, sti	f, no odour		
			_			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			0,5					TP133 - 0.4-0.5m	
			_						
			_						
			_						
						Borehole TP133 terminated at 0.9m			
			1, <u>0</u>			Borefide IF 133 terminated at 0.911			
			_						
			_						
			_						
			1,5						
			_						
			_						
			-						
			2,0						

TEST PIT NUMBER TP134 PAGE 1 OF 1

	ENVIRON
--	---------

			I	۷I	KC)N			
						rri Kurri			
						83			
DATE STARTED 26/6/14 COMPLETED 26/6/14 R.L. SURFACE									
Method	Water		Depth (m)	hic Log	Classification Symbol	Material Description		Samples Tests Remarks	Additional Observations
						ASPHALT			
			-			FILL; gravelly silty SAND and sandy CLAY; very croots, very compacted tar layer, no odour	ompacted with scrap, tree	TP134 - 0.12-0.2m	
			_					TP134 0 0.2-0.3m	
			-						
			0,5			NATURAL; sandy CLAY; grey/orange mottled, no	odour	TP134 - 0.4-0.5m	
			_						
			-						
			_						
			1.0						
			, -			Borehole TP134 terminated at 1m			
			-						
			-						
			_						
			-						
			1 <u>,5</u>						
			_						
			_						
			_						
			_						

TEST PIT NUMBER TP135 PAGE 1 OF 1

SENVIRON

-	1		IN	۷I	Ν	JΝ					
CLII	ENT	_ <u>Н</u> у	dro Al	lumini	um Ku	ırri Kurri					
PRO	IJΕ	CT N	JMBE	R _A	S1303	983	PROJECT LOCATION				
DAT	E S	STAR	ΓED _	26/6/	14	COMPLETED _26/6/14	R.L. SURFACE				
EXC	ΆV	ATIO	N CON	NTRAG	CTOR	\$	SLOPE	E	BEARING		
						1					
TES	T P	IT SIZ	ZE			I	OGGED BY KW	(CHECKED BY		
NO	ΓES										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Additional Observations		
						FILL; gravelly sity SAND and sandy CLAY; very co tree roots, no odour	mpacted with metal scrap,				
				\bowtie				TP135 -	1		
						Tar Layer		0.1-0.15m TP135 - 0.15-0.2m	-		
								0.15-0.2m TP135 -			
								0.2-0.3m			
						NATURAL; sandy CLAY; grey/orange mottled, no o	dour, with gravel	TP135 -			
			0,5					0.4-0.5m			
						No gravel from 0.5m onwards]		
			-								
			1,0								
			1,0	/////		Borehole TP135 terminated at 1m					
			1 <u>,5</u>								
			-								
			-								
			امما								

PAGE 1 OF 1

SENVIRON	
CLIENT Hydro Aluminium Kurri Kurri	PROJECT NAME Phase 2 ESA
PROJECT NUMBER AS130383	PROJECT LOCATION

 DATE STARTED
 26/6/14
 COMPLETED
 26/6/14
 R.L. SURFACE
 DATUM

	STARTED 26/6/14 COMPLETED 26/6/14 R.L. SU							
EXCAVATION CONTRACTOR								
TEST PIT SIZE					_ LOGGED BY KW	LOGGED BY KW CHE		
NOTES								
Method Water (a) Nater	Material Des RL Depth (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)				otion	Samples Tests Remarks	Additional Observations	
Method Water	Depth (m)		Classifin Symbol	ASPHALT/TAR overlying FILL; gravelly silty SAND and sandy CLAY; vertree roots, no odour NATURAL; sandy CLAY; with gravel No gravel 0.4m onwards Borehole TP136 terminated at 0.8m				

PAGE 1 OF 1

SENVIRON	
----------	--

PROJECT NUMBER AS130383								
						PROJECT LOCATION		
					COMPLETED 26/6/14 R.L			
					SLC			
					TES			
	s							
Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Additional Observations
					silty SAND; pieces of glass and concrete		TP137 - Surfac	ре
		_						
					FILL; gravelly silty SAND, brown, no odour		TP 137 - 0.1-0.2m	
							TP137 - 0.2-0.3m	
		_			NATIDAL coods CLAV			
		0,5			NATURAL; sandy CLAY; mottled red/grey/brown, very no gravel from 0.4m onwards	slight hydrocarbon odour,	TP137 - 0.4-0.5m	
		_						
		-						
		1,0						
			/////		Borehole TP137 terminated at 1.1m			
		-						
		_						
		_						
		1,5						
		_						
		_						
		_	_					

TEST PIT NUMBER TP138 PAGE 1 OF 1

SENVIRON

PROJECT NUMBER _AS130383 PROJECT LOCATION							IN	KC	۷I	IN			•	
DATE STARTED 26/6/14 COMPLETED 26/6/14 R.L. SURFACE BEARING MERCAVATION CONTRACTOR SLOPE BEARING MERCAVATION CONTRACTOR SLOPE TEST PIT LOCATION AEC31														
Part Part		PROJECT LOCATION						S13038	R _AS	JMBE	CT N	OJE	PR	
EQUIPMENT Backhoe TEST PIT LOCATION AEC31 TEST PIT SIZE LOGGED BY KIV CHECKED BY NOTES Post		ATUM	D	R.L. SURFACE			COMPLETED	14	26/6/1	ΓED _	TAR	TE S	DA ⁻	
TEST PIT SIZE LOGGED BY KW CHECKED BY NOTES Description Samples Tests Remarks Additions		Earing	В	E	SI	EXCAVATION CONTRACTOR								
NOTES Page						EQUIPMENT Backhoe								
Natural: sandy CLAY: motified brown/red/grey, no odour Priss - O.6-O.7m		HECKED BY	c	ED BY KW	LC									
FILL; sitty sandy CLAY; brown with gravel (small) TP138 - 0.1-0.2m TP138 - 0.2-0.3m TP138 - 0.2-0.3m TP138 - 0.4-0.5m NATURAL; sandy CLAY; motited brown/red/grey, no odour TP138 - 0.6-0.7m Borehole TP138 terminated at 1m												TES	NO.	
TP138 - 0.1-0.2 m TP138 - 0.2-0.3 m TP138 - 0.4-0.5 m NATURAL; sandy CLAY; mottled brown/red/grey, no odour TP138 - 0.6-0.7 m Borehole TP138 terminated at 1 m	al Observations	Additional C	Tests		Description	Material		Classification Symbol	Graphic Log			Water	Method	
0.5. NATURAL: sandy CLAY: mottled brown/red/grey, no odour TP138 - 0.4-0.5m NATURAL: sandy CLAY: mottled brown/red/grey, no odour TP138 - 0.6-0.7m Borehole TP138 terminated at 1m			TP138 - Surface		/el (small)	orown with grav	LL; silty sandy CLAY; b							
0.2-0.3m TP138 - 0.4-0.5m NATURAL; sandy CLAY; mottled brown/red/grey, no odour TP138 - 0.6-0.7m Borehole TP138 terminated at 1m														
NATURAL; sandy CLAY; mottled brown/red/grey, no odour TP138 - 0.6-0.7m Borehole TP138 terminated at 1m Borehole TP138 terminated at 1m														
NATURAL; sandy CLAY; mottled brown/red/grey, no odour TP138 - 0.6-0.7m Borehole TP138 terminated at 1m Borehole TP138 terminated at 1m														
TP138 - 0.6-0.7m 1,0 Borehole TP138 terminated at 1m -			TP138 - 0.4-0.5m	ur.	n/red/gray no	· mottled brave	ATLIDAL: candy CLAV			0,5				
1,0 Borehole TP138 terminated at 1m -				"	i/red/grey, no	, mottied brown	ATONAL, Salidy CLAT,			_				
Borehole TP138 terminated at 1m										_				
Borehole TP138 terminated at 1m										-				
Borehole TP138 terminated at 1m										_				
Borehole TP138 terminated at 1m										1,0				
1,5						ted at 1m	orehole TP138 termina							
1 <u>.5</u>														
1 <u>.5</u>														
1 <u>.5</u>														
										1 <u>,5</u>				
										-				
										_				

						rri Kurri 83		PROJECT NAME Phase 2 ESA PROJECT LOCATION			
DA ⁻	TE S	TAR	red _	26/6/	14	COMPLETED 26/6/14	R.L. SURFACE	DA	TUM		
EQI TES	UIPN ST P	MENT IT SIZ	Bac	ckhoe			TEST PIT LOCATION _	AEC31			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	iption	Samples Tests Remarks	Additional Observations		
_		(111)	(111)			FILL; silty sandy CLAY; brown with gravel (sn	nall), no odour	TP139 - Surface			
			_					TP139 - 0.1-0.2m			
			_			NATURAL; sandy CLAY; red/gre/brown mottl	ed, no odour	TP139 - 0.2-0.3m			
			0 <u>,5</u>					TP139 - 0.4-0.5m			
			_								
			- 1 <u>,0</u>								
						Borehole TP139 terminated at 1.2m					
			_								
			1,5								
			_								
			_								
			_								

PAGE 1 OF 1

C	ENVIRON	
CLIENT	Hydro Aluminium Kurri Kurri	

CLIENT Hydro Aluminium Kurri Kurri	PROJECT NAME Phase 2 ESA	
PROJECT NUMBER AS130383	PROJECT LOCATION	
DATE STARTED _26/6/14	R.L. SURFACE	DATUM
EXCAVATION CONTRACTOR	SLOPE	BEARING
EQUIPMENT Backhoe	TEST PIT LOCATION AEC31	
TEST PIT SIZE	LOGGED BY KW	CHECKED BY
NOTES		

EX	CAV	ATIO	N COI	NTRA	CTOR	:	SLOPE	BE	EARING
EQ	UIP	MENT	Bac	ckhoe			EST PIT LOCATION AE	C31	
ΓE	ST P	IT SIZ	ZE				OGGED BY KW	CH	HECKED BY
NO	TES	·							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Additional Observations
			, ,			FILL; gravelly sandy CLAY		TP140 - Surface	
			_			NATURAL; sandy CLAY; brown/orange/grey/red m	ottled, no odour	TP140 - 0.1-0.2m	
			_					TP140 - 0.2-0.3m	
			_						
			0 <u>,5</u>					TP140 - 0.4-0.5m	
			_						
			_						
			_						
			1,0						
_			1,0	77777		Borehole TP140 terminated at 1m			
			_						
			_						
			_						
			1 <u>,5</u>						
			_						
			_						
			_						
			2,0						

Appendix G

Laboratory Reports for Soil

			CHAIN OF CUSTODY - Client	P	CUS	TOD	Y - C	lien	ب				Fmilitalish	
- 1			Ш	NVIR	ENVIROLAB	SERVICES	CES						TILATI OID	
Client:	ENVIRON III FIONA ROBINSON	No		Client Project	Project Nai	Client Project Name and Number:	mber:			Envirola 12 Ashley	Envirolab Services	es Manada	750C M3	
Sampler:	KIRSTU GREEN	FIED		PO No.:							or ciaes	noon I	7007 'AAC	
Address: Swite	suite 1910, Level	2,50 glebe	lebe Rd	Envirol	ab Service	Envirolab Services Quote No. :	;			Phone: 02	Phone: 02 9910 6200	0		
	The Junction 1	NSW 2	1521	Date re	Date results required:	ired:				Fax: 02	02 9910 6201	11		
Email: (Co	Email: Kgreen felde environcorp. Com	uronce	YP. COM	Or choc	se: stand	Or choose: (standard)/ 1 day / 2 day / 3 day	/ 2 day / :	3 day		E-mail: a	hie@envire	olabserv	E-mail: ahie@envirolabservices.com.au	
Phone: 4	400044	Fax: 4962	2,5888	Note: Inform lab is surcharge applies	orm lab in adv g applies	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	t turnaround i:	s required -		Contact: Aileen Hie	Vileen Hie			
	Sample information	nation						Tests Required	quired				Commante	
Envirolab Sample ID	Client Sample ID	Date	Type of sample	Solizoni	SHAC							Chop	Provide as much information about the sample as you can	
	AEC II Selvino Pu	11/100		けい	1	1	7	\dashv	$\frac{1}{2}$			Н		
,	VEC 1000 1000	11000	2000	X	+	+								
7	AE/ 2 SAIRS 0-2-					+	1	-						
7	AEC - 50103: 0 01				X	+	+							
1	0F/2 SRICH: 0-0:1				X	+	+	+	+					Wirolab Samiras
0	NEC 28104: 0:304					+	+	+	+	\int			ENVIROLIAB	12 Ashley St
п	AEC2 SB105: 0-0.1			X	(x	+			-					7: (02) 9910 6200
00	AEC2 58105:0.3-04			X	\ \			-				\perp	JOD ING. 112.	200
3	AEQ658106:0-0-1			X	X								Date Received.	3/7/14
0	AEC 26 58106: 0-3-0-4											X	Time Received.	10:00
5	AFX SRIOT 0-0-1			X	X								Temp: @@//Ambi	ent
13	NECK < B108:0-0:1		-	*		+	+	+	+				Cooling: @Ycep	
ブ	RECS 58108:0.3-04	→	*		H	\parallel		H			$oldsymbol{\perp}$		Security (BEVE	OKETINOTIE
Relinguished	Relinquished by (company):	Vivaon			-	-	1	+						
Drint Namo	Drint Warmer Control of Control			Keceive	Received by (company):	pany):	177			Samples Rec	Samples Received: Cool or Ambient (circle one)	r Ambient	(circle one)	
Patro CT	A CALLAND WELLEN	THE D		Print Name:	ıme:		Jenniz			Temperature	Temperature Recieved at:		(if applicable)	
Signature:	Signature:			Date & Time:	Time:	3/7	17/14	10:00		Transported	Transported by: Hand delivered / courier	livered / o	ourier	
oignature.	CONTROL			Signature:	re:		Daniel					Pac	Page No:	

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

Client: ENVIROR Project Mgr: FlowA R						בו	OF CUSIODY - Client	ב ב				Friedsh
Mgr: f				VVIRO	ENVIROLAB SERVICES	RVICE	Ś					CHINICOID
	KON			Client Pro	E	d Number:	200		F	Envirolab Services	vices	
Sampler: 1/10/5	COPPINI			757	HYDIZO A	A5/30383	3		Ī	12 Ashley St, Chatswood, NSW, 2067	hatswood,	NSW, 2067
V	1	155	0.7	NO NO.:								
201	262	Ψ	DE KO	Envirolab	Envirolab Services Quote No. :	te No. :				Phone: 02 9910 6200	0029	
Caroli Vavoa C		7 MCV	123	Date resu	Date results required:					Fax: 02 9910 6201) 6201	
CIIIIIII KAIKKUDEJOG		environcorpicon	O.Com	Or choose	Or choose: standard) 1 day / 2 day / 3 day	1 day / 2 d	ay / 3 day		44	E-mail: ahie@envirolabservices.com.au	nvirolabse	rvices.com.au
Phone: 49625444	11/14	Fax: 4962	25888	Note: Inform lab i surcharge applies	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	f urgent tumai	ound is require	- <i>ρ</i> ε		Contact: Aileen Hie	Hie	
	Sample information	ation				2	Test	Tests Required				Comments
Envirolab Client:	Client Sample ID	Date	Type of sample	sidulis Strans	Xalahan							Provide as much information about the sample as you can
IF AECZM	AEC2 MW103:0-0-1	30/6/14	Soll			#	T	$\frac{1}{1}$	#	+	1	
16 AFC MI	ATO MINIO O COLONIA		0100		+	+			+			
	0+02 MW104-0-0-1	1			+	+	+		+			
18 AEC MIN	AECZ MINION, 0.3-04					+	1		+	+		
Natreceived AFCX MWIOS:0-8-	VIO5:0-0:1	-		\(\frac{1}{2}\)	X	+	1	+	#		+	
19 AECK MI	AECK MW105: 0.3-0-4	F				+	1		+	+	1	
received AECS MW	AECS MW105: 0.9-1.0			1	 X	+		+	+		+	
				X		+	F	+	+	+	+	
21 DUP B		B	P	X					+		+	
		-								 	- -	
				-	+	+	+	+	#			
				H			\prod	\parallel				
Relinquished by (company):	ny):			Received h	Received hy (company):	7		+	+			
Print Name:				Brint Mane	Allembally	7	7		3	Samples Received: Cool or Ambient (circle one)	ool or Ambie	int (circle one)
Date & Time:				Date & Time.		2/2/10	-	8	7	Temperature Recieved at:	ed at:	(if applicable)
Signature:				Signature.	2	tela	2	3	F	Transported by: Hand delivered / courier	d delivered	/ courier

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

			CHAIN	OF	OF CUSTODY - Client	TO	<u>}</u>	5	ent						Aclos Hall
					NVIROLAB SERVICES	SER	VICE	10			2				TIIVICOIAU
Client: Project Mgr:	FION	N 05		Client	Client Project Name and Number:	ASI	3038	Ć.			교 :	Virola	Envirolab Services	ices	Envirolab Services
Sampler:	~	NFID	Q	PO No.:							+		50 C	'nooms	1907, 2007
Address: SUNE	we harever	2,500	lebe Rd	Enviro	Envirolab Services Quote No. :	es Quote	No. :				¥	ne: 02	Phone: 02 9910 6200	200	
N. K.		MSWZ	187		Date results required:	uired:					Fax:	: 02	02 9910 6201	201	
Phone: LC162 57	2012	1011VC Fax: 496	FAX: 49625888	-	Or choose: standard) 1 day / 2 day / 3 day Note: Inform lab in advance if urgent tumaround is required - surcharge applies	dard 1 c	day / 2 di pent tuman.	ay / 3 da	y ired -		<u> </u>	nail: al	E-mail: ahie@envir Contact: Aileen Hie	rirolabs	E-mail: ahie@envirolabservices.com.au
	Sample information	nation	200					Te	Tests Required	ind		Transfer .			
				3	-			-			H	F	H	-	Comments
Envirolab Sample ID	Client Sample ID	Date	Type of sample		SHAG									OTOH	Provide as much information about the sample as you can
72	AECS MW 106:0-01	カルー	Sold	X	X	I	t	+		\dagger	+		\dagger	\bot	
23	AECS MWICOS: 630-4	_			+	-	<u> </u>	+		\dagger	+		+)	
77	AECS MW107.0-15-0-2	10		X	X		+	+		\dagger	+		+	X .	
Z	PECS MWIOF:03-04						\vdash	+		\dagger	+	1	+	X	
3.	AECS SBIOF 0-0-1	+		X	X					T	-		+	1	
1 7	AECS 510903-04	+		Í							H			X	
202	AF(8 58110: 0-0-1	+		X	X	1	+	+		+	H				
12	AEC4 SBILL: 0-0-1				X		+	+		+	+	1	+	X	
200	JEC45BIII:0.4-05				X		+	+		\dagger	+		+	1	
10	MECH 58111: 08-0.9	1					H	H		H	\vdash		-	X	
24	10-0-0-10-0-10-0-10-0-10-0-10-0-10-0-1	1		Y	X	1	+	+					Н		
	AEU SBIZ 08-09	0			X X	1	+	+		+	+	1	+	7	
					-	I	\dagger	-	I	\dagger	+	1	+	N. C.	
Relinquished	Relinquished by (company):			Received	Received by (company):	ipany):	273								
Print Name:				Print Name:	me:	1	Burn	2			E .	nes keo	Wed: Cod	or Ambi	Samples Received: Cool or Ambient (circle one)
Date & Time:				Date & Time:	Time:	10	かんい	1	8		E ,	erature	lemperature Recieved at:	at:	(if applicable)
Signature:				Signature	نة		16	1	1			sported I	Iransported by: Hand delivered / courier	delivered	/ courier
							7	James -			4				Page No:

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

			CHAIN	OF	OF CUSTODY - Client	TOD	Y - C	lien	ب			(A)		Funktolah
				NVIR	NVIROLAB SERVICES	SERVI	CES							
Client: Project Mgr:	FIONA ROBIN	NOS		Glient P	Client Project Name and Number:	15 13038 2	38.3			En 12	virolab	Envirolab Services	es	COOL MON
Sampler:	RSW GREET	WELLD		PO No.:						T		y Cilars	MOOD,	15 ASING St Character, NSW, 2007
Address: Ta	3	Sclebe	2.80	Envirola	Envirolab Services Quote No.:	Quote No.				Pho	ne: 02 5	Phone: 02 9910 6200	0	
1-	- resurch	JUNCHON NSW229	V2291	- Anna	Date results required:	:eq:				Fax:	. 02	02 9910 6201	11	
Email: KO		WIRAN	servirantors, com	-	Or choose: standard 1 day / 2 day / 3 day	ird 1 day	/ 2 day / 3	3 day		E-A	vail: ahi	e@envir	olabser	E-mail: ahie@envirolabservices.com.au
Phone: 4	たらいいます	Fax: UD6	Fax: UP1615888	Note: Inform lab il Surcharge applies	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	ance if urgent	turnaround i:	s required -		S	Contact: Aileen Hie	een Hie		
	Sample information	nation						Tests Required	aduired					Commonte
Envirolab Sample ID	Client Sample ID	Date	Type of sample	admont 3	ZHAC								molt	Provide as much information about the sample as you can
36	AF45813:0-0.1	かん	5011		1	1	1	+	1	+	1	+		
37	子でするのであって	+	1	1		+	1	+	+	+		+	#	
38	AE45B113:08-09					+	-		+	+	\downarrow	+		
30	AECH SBIIH:0-0-1			()	X			-	+	+	+	+		
57	AECH SB114: 0-4-05				X		F	+		-	+	+		
٤.	14.24.58114:08.06									-	\downarrow	-		
75	ARUZ SBIIS: 0-0-(X							\downarrow	-		
777	ACUSBIS:04-0-7	Ŧ)	\prod			H		H		H	X	
1	AEC1758116:0-1-0-7			(X	-		1		#	+	\pm	+		
	AEC25581P1:0-01			X			-	+	+	+	+	+	1	
+ +	152558119:03-04			X				\vdash		+	\downarrow	-	1	
200	AFZ558/26:0-0:1			X						-		-		
)	AK2558120:0:1-0:2	•	Ð	\parallel		\parallel				\prod			X	
Relinquished	Relinquished by (company):			Received	Received hy (community).	-	7/7		1	+		-		
Print Name:				Print Name	no.	1	1			Samp	oles Receiv	red: Cool o	r Ambien	Samples Received: Cool or Ambient (circle one)
Date & Time:				Date & Time.	imo.	7	2/2/1.	04.0		Temp	erature R	Temperature Recieved at:		(if applicable)
Signature:				Signature		1	Jones Co	10-00		Trans	sported by	Iransported by: Mand delivered / courier	livered /	courier
				Name and Address of the Owner, where			The Court			1			ä	Page No:

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

	CHAIN	OF CUST	OF CUSTODY - Client		4
		ENVIROLAB SERVICES	ERVICES		Mirolag
Olient: ENVIKON Project Mgr: MONA ROBINSON	SON	Client Project Name and Number:	and Number: AS 130383	Envirolab Services	
Sampler: KUPS TO GKETENTIE		PO No.:		1907 'ASM' CHARGOOD, NSM' 2007	/0
Address: Surve 1918, Cove	2,50 glebe Rd	Envirolab Services Quote No. :	uote No. :	Phone: 02 9910 6200	
(Ne Junchan	NSWZZSI	Date results required:	d:	Fax: 02 9910 6201	
Email: ASYCENTICIONENTINONICAPICON	VIYOM COMPICION	Or choose: standard	Or choose: standard / 1 day / 2 day / 3 day	:	m.au
Phone: 496254444	Fax: 491625888	Note: Inform lab in advand Surcharge applies	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	Contact: Aileen Hie	
Sample information	ation		Tests Required		Commonte
Envirolab Client Sample ID	Date Type of sample	emble SHA92 SHA92		anof	Provide as much information about the sample as you can
(70 AE/755R171.0-01	1/12 LIVE 1			1	
TI AZ7558121 01-07	1				
255812		X			
255812				>	
1 M2555R173:0-0-1		X			
$\mathfrak{I}_{\mathfrak{l}}$		X			
10 AT 5 S 13 0 4 5				X	
A CA		XX			
JY AEC255B125: 0-0:1					
0 MESS		/			
67 18(2) 28(6:0-0.1		X			
8.0-7.0-97IQC 57-6.8	D				
Relinquished by (company):		Received by (company):	W): FLS	Samples Bereived (Contract)	
Print Name:		Print Name:		Townships Received: Cool of Ambient (Circle on	ne)
Date & Time:		Date & Time:	3/7/14	Transport (if applicable)	able)
Signature:		Signature:		rightsported by: Hand delivered / courier	
			Mon	Page No:	

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

			CHAIN	OF C	UST(OF CUSTODY - Client	Clie	ıt				- Find	Arloy
				AVIRO	LAB SE	ENVIROLAB SERVICES							
Client: Froject Mgr:	FNVIRON F FIONA ROBIN	SON		Client Pro	DRO 1	Client Project Name and Number:	a		Env 12 A	Envirolab Services 12 Ashley St. Chatswo	ervices	Envirolab Services 12 Ashlev St. Chatswood. NSW. 2067	
Sampler:	KIRSTNOBER	VEIEL		PO No.:					Γ				
Address:	1981	-	Lebe Ro	Envirolab	Envirolab Services Quote No.:	ote No. :	v (e		Phon	Phone: 02 9910 6200	10 6200		
P	25.5	SW CL	1571	Date resu	Date results required:				Fax:	02 99:	02 9910 6201		
Phone:	1961 STURE	PV(L/OY)(Fax:	Or choose: st. Note: Inform lab is surcharge applies	standard	Or choose: 'standard) 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - surcharge applies	y / 3 day ind is required		E-mail Cont	E-mail: ahie@envir Contact: Aileen Hie	envirolab n Hie	E-mail: ahie@envirolabservices.com.au Contact: Aileen Hie	ne'
	Sample information	nation					Tests	Tests Required				8	Comments
Envirolab Sample ID	Client Sample ID	Date	Type of sample	angmos angmos	Class							Provide informatio sample a	Provide as much information about the sample as you can
50	AC2558127:0-01	119年	Sol	X		F	F	F			\perp		
40	AE2558127:01-02			X									
50	127 of	90		X									
90	Dupc	$\frac{1}{2}$		X								·	
な	DUPD	+		X.									
90	DANGE COLORINA COLORI	+		X	+	+							
	7.10 C/2	1			+	+	+	7	1	1			
	10 1	*	A	X	+		+	1	1	+	*	_	dese send t
				1	+		+	+		+	+	, ALS }	ILS for avail
								H					
					+		#						
					+	+	\parallel	\parallel	\prod	+	\parallel		
Relinquished	Relinquished by (company):			Received I	Received by (company):	777 :0		1	Campl	- Berginson			
Print Name:				Print Name:	ë	1	7		Tempo	Jamperature Recieved at:	. Cool of Am	Temperature Decision of Ambient (Circle one)	6
Date & Time:	ä			Date & Time:	ne:	3/7/14	0.01 1	8	Tranen	orted hv.	Transported hv. Mand delivered / consists	mulde ii))
Signature:				Signature:		Delan	N			roited by. r	iainu uemver	eu / courier	
						1			September 1 and 1			rage NO:	The second secon

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

		1000000	CHAIN	OF CUST	OF CUSTODY - Client	72			Fmykydah
			E	ENVIROLAB SERVICES	RVICES				CHIVII VIGO
Client: Project Mgr:	FINITOR ROBING	Nos		Client Project Name and Number:	and Number:	En.	Envirolab Services 12 Ashley St, Chatswood, NSW, 2067	ood, NSW,	2067
Sampler:	KIKSIN GREF	N. FLA	ď				•	•	
Address: 5	Surve 19B, Leve	27.20	ciebe Ro	Envirolab Services Quote No.:	ote No. :	Pho	Phone: 02 9910 6200		
f	he Junch	N NSV	3	Date results required:		Fax:	: 02 9910 6201		
Email: K	green 2010@	CENTIONION ON	neap-con	Or choose: standard	Or choose: Standard 1 day / 2 day / 3 day	<u></u>	E-mail: ahie@envirolabservices.com.au	abservices	s.com.au
Phone: 4	49625444	Fax:		Note: Inform lab in advance surcharge applies	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	2	Contact: Aileen Hie		·
	Sample information	nation			Tests Required	p			Comments
Envirolab Sample ID	Client Sample ID	Date	Type of sample	shang SHAC				Chol	Provide as much information about the sample as you can
70	AE/17 SRIP: 0-0.1	1/1/6/0	(1)	1		+		1	
7,	NEC125AIT 0 10			 X				-	
72	AEC125B118.0-6-1			X				-	
73	AEC125B118:0-2013	5		X					
77	PECJ558129:0-01	J		X					
75	NECZS 58129: 0-1-0.	7		X					
76	NEC25SB127: 8 5-1:0			X X				1	
78	AEC755B178: 0-0-1	2		X		+		X	
29	\ N			X					
3		4		X					
0	AEC2558132:0-01			X					
3		3					4	X	
50	AEC255B133:02-03	3.3		X					
24	NEC255B133 03-014	4		X					
Relinquished	Relinquished by (company):			Received by (company):	n: E15	Sam	Samples Received: Cool or Ambient (circle one)	Ambient (cir	cle one)
Print Name:				Print Name:	Burns	Tem	Temperature Recieved at:	(if a	(if applicable)
Date & Time:				Date & Time:	3/7/14, 10:00	Tran	Transported by: Hand delivered / courier	vered / couri	er
Signature:				Signature:	- Junio		•	Page No.	ë
				Annual Control of the	- Chamber			a age	2

			CHAIN OF COS) - -	200	- 127	ODY - Client	ב			*	Fnytrolah	
			<u>u</u>	NVIRO	LAB SE	ENVIROLAB SERVICES	10					CITY I VIGO	
Client: E	ENVIRON PORINCO) AU		Client Project N:	ect Name a	Client Project Name and Number:	u		Envir 12 Ast	Envirolab Services	vices	Envirolab Services	
Sampler:	KIRSIN	NFIELD		PO No.:	1					to for			
Address:	168 Leve	12,560	Labe Rd	Envirolab Services		Quote No. :			Phone	Phone: 02 9910 6200	6200		
	The Junchon	NSW 229	161	Date resu	Date results required:				Fax:	02 9910 6201	6201		
Email: K	greenholden	WIGOL	Penviron corp. com	Or choose	standard	Or choose: standard 1 day / 2 day / 3 day	ıy/3 day		E-mai	: ahie@er	virolabse	E-mail: ahie@envirolabservices.com.au	
Phone:	49625444	Fax:		Note: Inform lab is surcharge applies	lab in advance olies	if urgent turnaro	Note: Inform lab in advance if urgent turnaround is required - surcharge applies		Conta	Contact: Aileen Hie	Hie		
	inform	nation					Tests	Tests Required				Comments	
Envirolab Sample ID	Client S	Date sampled	Type of sample	SHYd Solomis	7015/201 ***\$/***						CHOH	Provide as much information about the sample as you can	
Sp.	MECSS SB134:0-0:1	2/1/4	7016	X		F	F	F		F	\vdash		_
98	1FC7558134:02-03	3	1								X		_
to	AECS 58135:0-0-1			Х							1		_
88	AEC255B135:0-1-6-2	5-2									X		_
88	NEC255B135: 03-04	5.4		X									
Ch	DUPG			X									
2	DUPH			X									_
(DUP HA										*	Please sendt	
1	AEC 2 MWIDS 0.9-1,0 30/6/14	30/19/08			×						_	ALS PASOUN.	Dublo Riveran
Somole (43	AECS MNIOF OVE-OR	7		×	×						-	•	
				_	‡	+	+	-	+	+	+		
							F	F		+	+		_
						\parallel							
Relinquist	Relinquished by (company):			Received	Received by (company):	13: 7515			Sample	s Received: C	Sool or Amb	Samples Received: Cool or Ambient (circle one)	T
Print Name:	ie:			Print Name:	:: :	,	15		Temper	Temperature Recieved at:	ed at:	(if applicable)	
Date & Time:	те:			Date & Time:	ne:	3/7/14	201 f		Transpo	Transported by: Hand delivered / courier	nd delivered	/ courier	
Cinnaham							ŀ			-			

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 112503

Client:

Environ

PO Box 560 North Sydney NSW 2060

Attention: Fiona Robinson

Sample log in details:

Your Reference: Hydro AS130383

No. of samples: 93 Soils

Date samples received / completed instructions received 03/07/2014 / 03/07/2014

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 10/07/14 / 10/07/14

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Laboratory Manager

	Ι			
VOCs in soil	LINITTO	440500 40	440500.00	440500.00
Our Reference: Your Reference	UNITS	112503-19 AEC8MW105	112503-92 AEC 2	112503-93 AEC 8
Tour Reference		ALGOWIN	MW105	MW105
Depth		0.3-0.4	0.9-1.0	0.15-0.25
Date Sampled		30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014
Dichlorodifluoromethane	mg/kg	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1
chloroform	mg/kg	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1
Ethylbenzene	mg/kg	<1	<1	<1
bromoform	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
styrene	mg/kg	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1

VOCs in soil				
Our Reference:	UNITS	112503-19	112503-92	112503-93
Your Reference		AEC8MW105	AEC2	AEC8
5			MW105	MW105
Depth		0.3-0.4 30/06/2014	0.9-1.0	0.15-0.25
Date Sampled Type of sample		30/06/2014 Soil	30/06/2014 Soil	30/06/2014 Soil
o-Xylene	mg/kg	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1
Surrogate Dibromofluorometha	%	90	97	99
Surrogate aaa-Trifluorotoluene	%	103	101	102
Surrogate Toluene-ds	%	100	101	99
Surrogate 4-Bromofluorobenzene	%	102	102	106

	T			
SVOCs in Soil				
Our Reference:	UNITS	112503-19	112503-92	112503-93
Your Reference		AEC8MW105	AEC 2 MW105	AEC 8 MW105
Depth		0.3-0.4	0.9-1.0	0.15-0.25
Date Sampled		30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	10/07/2014	10/07/2014	8/07/2014
Phenol	mg/kg	<1	<1	<1
Bis-(2-chloroethyl) ether	mg/kg	<1	<1	<1
2-Chlorophenol	mg/kg	<1	<1	<1
1,3-Dichlorobenzene	mg/kg	<1	<1	<1
1,4-Dichlorobenzene	mg/kg	<1	<1	<1
2-Methylphenol	mg/kg	<1	<1	<1
1,2-Dichlorobenzene	mg/kg	<1	<1	<1
Bis (2-chloroisopropyl) ether	mg/kg	<1	<1	<1
3/4-Methylphenol	mg/kg	<2	<2	<2
N-nitrosodi-n-propylamine	mg/kg	<1	<1	<1
Hexachloroethane	mg/kg	<1	<1	<1
Nitrobenzene	mg/kg	<1	<1	<1
Isophorone	mg/kg	<1	<1	<1
2,4-Dimethylphenol	mg/kg	<1	<1	<1
2-Nitrophenol	mg/kg	<1	<1	<1
Bis(2-chloroethoxy)methane	mg/kg	<1	<1	<1
2,4-Dichlorophenol	mg/kg	<1	<1	<1
1,2,4-Trichlorobenzene	mg/kg	<1	<1	<1
Naphthalene	mg/kg	<1	<1	5
4-Chloroaniline	mg/kg	<1	<1	<1
Hexachlorobutadiene	mg/kg	<1	<1	<1
2-Methylnaphthalene	mg/kg	<1	<1	3
Hexachlorocyclopentadiene	mg/kg	<1	<1	<1
2,4,6-trichlorophenol	mg/kg	<1	<1	<1
2,4,5-trichlorophenol	mg/kg	<1	<1	<1
2-Chloronaphthalene	mg/kg	<1	<1	<1
2-nitroaniline	mg/kg	<1	<1	<1
Dimethylphthalate	mg/kg	<1	<1	<1
2,6-Dinitrotoluene	mg/kg	<1	<1	<1
Acenaphthylene	mg/kg	<1	<1	<1
3-Nitroaniline	mg/kg	<1	<1	<1
Acenaphthene	mg/kg	<1	<1	9
2,4-dinitrophenol	mg/kg	<10	<10	<10
4-nitrophenol	mg/kg	<10	<10	<10
Dibenzofuran	mg/kg	<1	<1	2
diethylphthalate	mg/kg	<1	<1	<1
4-chlorophenylphenylether	mg/kg	<1	<1	<1
4-nitroaniline	mg/kg	<1	<1	<1
Fluorene	mg/kg	<1	<1	3

		T		
SVOCs in Soil				
Our Reference:	UNITS	112503-19	112503-92	112503-93
Your Reference		AEC8MW105	AEC 2 MW105	AEC 8 MW105
Depth		0.3-0.4	0.9-1.0	0.15-0.25
Date Sampled		30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil
2-methyl-4,6-dinitrophenol	mg/kg	<10	<10	<10
azobenzene	mg/kg	<1	<1	<1
4-bromophenylphenylether	mg/kg	<1	<1	<1
hexachlorobenzene	mg/kg	<1	<1	<1
pentachlorophenol	mg/kg	<10	<10	<10
Phenanthrene	mg/kg	<1	<1	4
Anthracene	mg/kg	<1	<1	1
carbazole	mg/kg	<1	<1	5
di-n-butylphthalate	mg/kg	<1	<1	<1
Fluoranthene	mg/kg	<1	<1	9
Pyrene	mg/kg	<1	<1	7
butylbenzylphthalate	mg/kg	<1	<1	<1
bis(2-ethylhexyl)phthalate	mg/kg	<1	<1	<1
Benzo(a)anthracene	mg/kg	<1	<1	2
Chrysene	mg/kg	<1	<1	2
di-n-octylphthalate	mg/kg	<1	<1	<1
Benzo(b)fluoranthene	mg/kg	<1	<1	1
Benzo(k)fluoranthene	mg/kg	<1	<1	<1
Benzo(a)pyrene	mg/kg	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	mg/kg	<1	<1	<1
Dibenzo(a,h)anthracene	mg/kg	<1	<1	<1
Benzo(g,h,i)perylene	mg/kg	<1	<1	<1
ethylmethanesulfonate	mg/kg	<1	<1	<1
aniline	mg/kg	<1	<1	<1
pentachloroethane	mg/kg	<1	<1	<1
benzyl alcohol	mg/kg	<1	<1	<1
acetophenone	mg/kg	<1	<1	<1
N-nitrosomorpholine	mg/kg	<1	<1	<1
N-nitrosopiperidine	mg/kg	<1	<1	<1
2,6-dichlorophenol	mg/kg	<1	<1	<1
hexachloropropene-1	mg/kg	<1	<1	<1
N-nitroso-n-butylamine	mg/kg	<1	<1	<1
safrole	mg/kg	<1	<1	<1
1,2,4,5-tetrachlorobenzene	mg/kg	<1	<1	<1
cis and trans iso-safrole	mg/kg	<1	<1	<1
1,3-dinitrobenzene	mg/kg	<1	<1	<1
pentachlorobenzene	mg/kg	<1	<1	<1
1-naphthylamine	mg/kg	<1	<1	<1
2,3,4,6-tetrachlorophenol	mg/kg	<1	<1	<1
2-naphthylamine	mg/kg	<1	<1	<1
5-nitro-o-toluidine	mg/kg	<1	<1	<1

	1	T		
SVOCs in Soil			440=00.00	440-00 00
Our Reference: Your Reference	UNITS	112503-19 AEC8MW105	112503-92 AEC 2	112503-93 AEC8
four Reference		AECONIN 105	MW105	MW105
Depth		0.3-0.4	0.9-1.0	0.15-0.25
Date Sampled		30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil
diphenylamine	mg/kg	<1	<1	<1
phenacetin	mg/kg	<1	<1	<1
pentachloronitrobenzene	mg/kg	<1	<1	<1
dinoseb	mg/kg	<1	<1	<1
methapyrilene	mg/kg	<1	<1	<1
p-dimethylaminoazobenzene	mg/kg	<1	<1	<1
2-acetylaminofluorene	mg/kg	<1	<1	<1
7,12-dimethylbenz(a)anthracene	mg/kg	<1	<1	<1
3-methylcholanthrene	mg/kg	<1	<1	<1
a-BHC	mg/kg	<1	<1	<1
b-BHC	mg/kg	<1	<1	<1
g-BHC	mg/kg	<1	<1	<1
d-BHC	mg/kg	<1	<1	<1
Heptachlor	mg/kg	<1	<1	<1
Aldrin	mg/kg	<1	<1	<1
Heptachlor Epoxide	mg/kg	<1	<1	<1
g-Chlordane	mg/kg	<1	<1	<1
a-Chlordane	mg/kg	<1	<1	<1
Endosulfan I	mg/kg	<1	<1	<1
p,p'-DDE	mg/kg	<1	<1	<1
Dieldrin	mg/kg	<1	<1	<1
Endrin	mg/kg	<1	<1	<1
p,p'-DDD	mg/kg	<1	<1	<1
Endosulfan II	mg/kg	<1	<1	<1
p,p'-DDT	mg/kg	<1	<1	<1
Endosulfan Sulphate	mg/kg	<1	<1	<1
Methoxychlor	mg/kg	<1	<1	<1
Surrogate 2-fluorophenol	%	125	127	131
Surrogate Phenol-de	%	131	136	136
Surrogate Nitrobenzene-ds	%	101	107	112
Surrogate 2-fluorobiphenyl	%	127	125	131
Surrogate 2,4,6-Tribromophenol	%	104	109	115
Surrogate p-Terphenyl-d14	%	105	107	112

PAHs in Soil						
Our Reference:	UNITS	112503-3	112503-4	112503-5	112503-6	112503-7
Your Reference		AEC2SB103	AEC2SB103	AEC2SB104	AEC2SB104	AEC2SB105
Depth		0.0-0.1	0.3-0.4	0.0-0.1	0.3-0.4	0.0-0.1
Date Sampled		30/06/2014	30/06/2014	30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.6	<0.1	0.5	0.8	1.3
Fluorene	mg/kg	0.3	<0.1	0.3	0.3	0.9
Phenanthrene	mg/kg	3.8	<0.1	4.7	7.6	11
Anthracene	mg/kg	0.7	<0.1	1.1	2.0	2.6
Fluoranthene	mg/kg	13	<0.1	14	27	29
Pyrene	mg/kg	12	<0.1	13	28	27
Benzo(a)anthracene	mg/kg	11	<0.1	11	14	28
Chrysene	mg/kg	11	<0.1	12	14	31
Benzo(b+k)fluoranthene	mg/kg	25	<0.2	32	31	68
Benzo(a)pyrene	mg/kg	15	<0.05	18	21	37
Indeno(1,2,3-c,d)pyrene	mg/kg	14	<0.1	16	18	32
Dibenzo(a,h)anthracene	mg/kg	1.4	<0.1	2.0	1.7	5.2
Benzo(g,h,i)perylene	mg/kg	12	<0.1	13	16	27
Benzo(a)pyreneTEQNEPMB1	mg/kg	21	<0.5	26	30	55
Total+ve PAH's	mg/kg	120	NIL(+)VE	140	180	300
Surrogate p-Terphenyl-d14	%	97	98	102	99	99

PAHs in Soil						
Our Reference:	UNITS	112503-8	112503-9	112503-11	112503-13	112503-15
Your Reference		AEC2SB105	AEC6SB106	AEC26SB107	AEC8 SB108	AEC2MW103
Depth		0.3-0.4	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1
Date Sampled		30/06/2014	30/06/2014	30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.2	<0.1	<0.1	0.1	0.8
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	0.4
Phenanthrene	mg/kg	3.3	<0.1	0.3	1.3	6.2
Anthracene	mg/kg	0.9	<0.1	<0.1	0.3	1.4
Fluoranthene	mg/kg	12	0.2	1.8	6.0	18
Pyrene	mg/kg	11	0.3	1.7	6.0	17
Benzo(a)anthracene	mg/kg	6.7	0.3	2.0	3.4	21
Chrysene	mg/kg	6.3	0.3	3.1	3.8	19
Benzo(b+k)fluoranthene	mg/kg	18	0.7	7.0	10	49
Benzo(a)pyrene	mg/kg	12	0.30	1.9	4.9	28
Indeno(1,2,3-c,d)pyrene	mg/kg	8.2	0.3	2.3	4.7	27
Dibenzo(a,h)anthracene	mg/kg	0.9	<0.1	0.4	0.5	4.1
Benzo(g,h,i)perylene	mg/kg	6.6	0.3	1.9	4.1	21
Benzo(a)pyreneTEQNEPMB1	mg/kg	16	<0.5	3.0	7.0	42
Total +ve PAH's	mg/kg	85	2.7	22	46	210
Surrogate p-Terphenyl-d14	%	89	112	98	102	96

PAHs in Soil						
Our Reference:	UNITS	112503-16	112503-17	112503-18	112503-19	112503-21
Your Reference		AEC2MW103	AEC2MW104	AEC2MW104	AEC8MW105	DUPB
Depth		0.3-0.4	0.0-0.1	0.3-0.4	0.3-0.4	-
Date Sampled Type of sample		30/06/2014 Soil	30/06/2014 Soil	30/06/2014 Soil	30/06/2014 Soil	30/06/2014 Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	1.7	<0.1	<0.1	0.2	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	6.3	0.4	<0.1	0.4	0.1
Fluorene	mg/kg	3.8	0.1	<0.1	0.2	<0.1
Phenanthrene	mg/kg	45	3.1	<0.1	0.2	1.2
Anthracene	mg/kg	12	0.7	<0.1	<0.1	0.3
Fluoranthene	mg/kg	140	11	0.2	0.1	5.0
Pyrene	mg/kg	140	13	0.2	0.1	5.0
Benzo(a)anthracene	mg/kg	150	11	0.2	<0.1	4.3
Chrysene	mg/kg	150	13	0.2	<0.1	5.5
Benzo(b+k)fluoranthene	mg/kg	310	42	0.4	<0.2	14
Benzo(a)pyrene	mg/kg	160	24	0.21	<0.05	6.0
Indeno(1,2,3-c,d)pyrene	mg/kg	120	18	0.2	<0.1	5.2
Dibenzo(a,h)anthracene	mg/kg	22	2.7	<0.1	<0.1	0.6
Benzo(g,h,i)perylene	mg/kg	100	15	0.2	<0.1	4.6
Benzo(a)pyreneTEQNEPMB1	mg/kg	250	34	<0.5	<0.5	9.0
Total+ve PAH's	mg/kg	1,400	150	1.7	1.2	52
Surrogate p-Terphenyl-d14	%	107	95	107	94	95

PAHs in Soil						
Our Reference:	UNITS	112503-22	112503-24	112503-26	112503-28	112503-30
Your Reference		AEC8MW106	AEC8MW107	AEC8SB109	AEC8SB110	AEC4SB111
Depth		0.0-0.1	0.15-0.25	0.0-0.1	0.0-0.1	0.0-0.1
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	1/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	0.7	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Fluoranthene	mg/kg	0.6	<0.1	2.2	<0.1	0.4
Pyrene	mg/kg	0.6	<0.1	2.0	<0.1	0.5
Benzo(a)anthracene	mg/kg	0.7	<0.1	0.8	<0.1	0.3
Chrysene	mg/kg	0.9	<0.1	0.8	0.1	1.0
Benzo(b+k)fluoranthene	mg/kg	2.4	<0.2	1.5	<0.2	0.9
Benzo(a)pyrene	mg/kg	0.72	<0.05	0.88	<0.05	0.48
Indeno(1,2,3-c,d)pyrene	mg/kg	0.7	<0.1	0.6	<0.1	0.3
Dibenzo(a,h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.7	<0.1	0.6	<0.1	0.4
Benzo(a)pyreneTEQNEPMB1	mg/kg	1.0	<0.5	1.0	<0.5	1.0
Total +ve PAH's	mg/kg	7.6	NIL(+)VE	10	0.10	4.3
Surrogate p-Terphenyl-d14	%	101	104	95	107	92

PAHs in Soil						
Our Reference:	UNITS	112503-31	112503-33	112503-34	112503-35	112503-36
Your Reference		AEC4SB111	AEC4SB112	AEC4SB112	AEC4SB112	AEC4SB113
Depth		0.4-0.5	0.0-0.1	0.4-0.5	0.8-0.9	0.0-0.1
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	1/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	2.0	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	0.9	<0.1	<0.1
Phenanthrene	mg/kg	0.4	<0.1	8.1	<0.1	0.2
Anthracene	mg/kg	<0.1	<0.1	1.7	<0.1	<0.1
Fluoranthene	mg/kg	1.5	<0.1	30	<0.1	0.4
Pyrene	mg/kg	1.6	<0.1	32	<0.1	0.4
Benzo(a)anthracene	mg/kg	1.2	<0.1	29	<0.1	0.3
Chrysene	mg/kg	1.1	<0.1	29	<0.1	0.6
Benzo(b+k)fluoranthene	mg/kg	2.3	<0.2	64	<0.2	0.9
Benzo(a)pyrene	mg/kg	1.5	0.06	38	<0.05	0.42
Indeno(1,2,3-c,d)pyrene	mg/kg	1.1	<0.1	28	<0.1	0.3
Dibenzo(a,h)anthracene	mg/kg	0.1	<0.1	3.8	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	1.0	<0.1	23	<0.1	0.3
Benzo(a)pyreneTEQNEPMB1	mg/kg	2.0	<0.5	55	<0.5	1.0
Total+ve PAH's	mg/kg	12	0.060	290	NIL(+)VE	3.7
Surrogate p-Terphenyl-d14	%	98	102	98	104	80

PAHs in Soil						
Our Reference:	UNITS	112503-37	112503-39	112503-40	112503-66	112503-76
Your Reference		AEC4SB113	AEC4SB114	AEC4SB114	DUPC	AEC25 SB129
Depth		0.4-0.5	0.0-0.1	0.4-0.5	-	0.9-1.0
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	2/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	1	0.2	<0.1	<0.1
Pyrene	mg/kg	0.1	1.0	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	1.4	0.2	<0.1	<0.1
Chrysene	mg/kg	0.1	2.7	0.2	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	0.2	4.1	0.5	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.12	0.96	0.16	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.6	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.8	0.1	<0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	2.0	<0.5	<0.5	<0.5
Total+ve PAH's	mg/kg	0.66	13	1.7	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	96	92	95	92	86

DALla in Cail		T	
PAHs in Soil Our Reference:	UNITS	112503-89	112503-93
Your Reference		AEC25 SB135	AEC8
			MW105
Depth		0.3-0.4	0.15-0.25
Date Sampled		2/07/2014	30/06/2014
Type of sample		Soil	Soil
Date extracted	-	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	4.0
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	7.3
Fluorene	mg/kg	0.1	2.7
Phenanthrene	mg/kg	0.3	3.4
Anthracene	mg/kg	<0.1	0.9
Fluoranthene	mg/kg	0.3	5.9
Pyrene	mg/kg	0.2	4.6
Benzo(a)anthracene	mg/kg	0.1	0.8
Chrysene	mg/kg	0.5	0.9
Benzo(b+k)fluoranthene	mg/kg	0.2	1.3
Benzo(a)pyrene	mg/kg	0.07	0.44
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.4
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.3
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	1.0
Total +ve PAH's	mg/kg	1.9	33
Surrogate p-Terphenyl-d14	%	92	98

			T	T	T	Τ
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-1	112503-2	112503-3	112503-4	112503-5
Your Reference		AEC11 SB101	AEC11 SC101	AEC2SB103	AEC2SB103	AEC2SB104
Depth		0.0-0.1	0.3-0.4	0.0-0.1	0.3-0.4	0.0-0.1
Date Sampled		30/06/2014	30/06/2014	30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	94	73	890	24	1,077
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-6	112503-7	112503-8	112503-9	112503-11
Your Reference		AEC2SB104	AEC2SB105	AEC2SB105	AEC6SB106	AEC26SB107
Depth		0.3-0.4	0.0-0.1	0.3-0.4	0.0-0.1	0.0-0.1
Date Sampled		30/06/2014	30/06/2014	30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	270	970	110	38	38
,						
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-13	112503-15	112503-16	112503-17	112503-18
Your Reference		AEC8SB108	AEC2MW103	AEC2MW103	AEC2MW104	AEC2MW104
Depth		0.0-0.1	0.0-0.1	0.3-0.4	0.0-0.1	0.3-0.4
Date Sampled		30/06/2014	30/06/2014	30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	_	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
,						
Fluoride (1:5 soil:water)	mg/kg	34	410	430	64	45
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-20	112503-21	112503-22	112503-24	112503-26
Your Reference		DUPA	DUPB	AEC8MW106	AEC8MW107	AEC8 SB109
Depth		DOI A	DOLD	0.0-0.1	0.15-0.25	0.0-0.1
Date Sampled		30/06/2014	30/06/2014	1/07/2014	1/07/2014	1/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	_	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	36	24	28	2.9	32
r idolido (1.0 doll.water)	mg/ng				2.0	J
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-28	112503-42	112503-44	112503-45	112503-46
Your Reference		AEC8SB110	AEC12SB115	AEC12SB116	AEC12SB116	AEC25 SB119
Depth		0.0-0.1	0.0-0.1	0.0-0.1	0.1-0.2	0.0-0.1
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	1/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	2.9	73	140	48	55

Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-47	112503-48	112503-50	112503-51	112503-52
Your Reference		AEC25 SB119	AEC25 SB120	AEC25 SB121	AEC25 SB121	AEC25 SB122
Depth		0.3-0.4	0.0-0.1	0.0-0.1	0.1-0.2	0.0-0.1
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	1/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	36	3.1	20	7.8	44
Miscellaneous Inorg - soil	LINITTO	440500 54	440500 55	110500 57	440500 50	440500 50
Our Reference:	UNITS	112503-54	112503-55	112503-57	112503-58	112503-59
Your Reference		AEC25 SB123	AEC25 SB123	AEC25 SB124	AEC25 SB124	AEC25 SB125
Depth		0.0-0.1	0.1-0.2	0.0-0.1	0.1-0.2	0.0-0.1
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	1/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	87	140	87	91	210
Missallenseus Insur seil						
Miscellaneous Inorg - soil	LINITE	110500 61	112502 62	110500 64	112502.65	110500 67
Our Reference:	UNITS	112503-61	112503-63	112503-64	112503-65	112503-67
Your Reference		AEC25 SB126	AEC25 SB127	AEC25 SB127	AEC25 SB127	DUPD
Depth		0.0-0.1	0.0-0.1	0.1-0.2	0.4-0.6	-
Date Sampled Type of sample		1/07/2014 Soil	1/07/2014 Soil	1/07/2014 Soil	1/07/2014 Soil	1/07/2014 Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	250	7.5	14	0.6	48
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-68	112503-69	112503-70	112503-71	112503-72
Your Reference		DUPE	DUPF	AEC12SB117	AEC12SB117	AEC12SB118
Depth		-	-	0.0-0.1	0.1-0.2	0.0-0.1
Date Sampled		1/07/2014	1/07/2014	2/07/2014	2/07/2014	2/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	<0.5	130	13	24	17
			<u> </u>	<u> </u>	<u> </u>	
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-73	112503-74	112503-75	112503-76	112503-77
Your Reference		AEC12SB118	AEC25 SB129	AEC25 SB129	AEC25 SB129	AEC25 SB128
Depth		0.2-0.3	0.0-0.1	0.1-0.2	0.9-1.0	0.0-0.1
Date Sampled		2/07/2014	2/07/2014	2/07/2014	2/07/2014	2/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	29	23	16	2.7	23
·		1	1	1	1	1

Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-79	112503-80	112503-81	112503-83	112503-84
Your Reference		AEC25 SB131	AEC25 SB131	AEC25 SB132	AEC25 SB133	AEC25 SB133
Depth		0.0-0.1	0.3-0.4	0.0-0.1	0.2-0.3	0.3-0.4
Date Sampled		2/07/2014	2/07/2014	2/07/2014	2/07/2014	2/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	10	52	2.3	5.0	27
	•		T	T	T	
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-85	112503-87	112503-89	112503-90	112503-91
Your Reference		AEC25SB134	AEC25 SB135	AEC25 SB135	DUPG	DUPH
Depth		0.0-0.1	0.0-0.1	0.3-0.4	-	-
Date Sampled		2/07/2014	2/07/2014	2/07/2014	2/07/2014	2/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
				1	1	
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014

		_	T		<u> </u>	T
Moisture						
Our Reference:	UNITS	112503-3	112503-4	112503-5	112503-6	112503-7
Your Reference		AEC2SB103	AEC2SB103	AEC2SB104	AEC2SB104	AEC2SB105
Depth		0.0-0.1	0.3-0.4	0.0-0.1	0.3-0.4	0.0-0.1
Date Sampled		30/06/2014	30/06/2014	30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	7.7	10	10	13	7.7
	1	1				
Moisture						
Our Reference:	UNITS	112503-8	112503-9	112503-11	112503-13	112503-15
Your Reference		AEC2SB105	AEC6SB106	AEC26SB107	AEC8 SB108	AEC2MW103
Depth		0.3-0.4	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1
Date Sampled		30/06/2014	30/06/2014	30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	11	4.5	7.4	11	11
	1	1				
Moisture						
Our Reference:	UNITS	112503-16	112503-17	112503-18	112503-19	112503-21
Your Reference		AEC2MW103	AEC2MW104	AEC2MW104	AEC8MW105	DUPB
Depth		0.3-0.4	0.0-0.1	0.3-0.4	0.3-0.4	-
Date Sampled		30/06/2014	30/06/2014	30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	_	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	12	8.1	9.4	12	8.7
Widistale	76	12	0.1	3.4	12	0.7
Moisture						
Our Reference:	UNITS	112503-22	112503-24	112503-26	112503-28	112503-30
Your Reference		AEC8MW106	AEC8MW107	AEC8SB109	AEC8SB110	AEC4SB111
Depth		0.0-0.1	0.15-0.25	0.0-0.1	0.0-0.1	0.0-0.1
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	1/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	10	16	5.3	3.3	12
	1 ,,		<u> </u>	1 0.0		<u> </u>
Moisture						
Our Reference:	UNITS	112503-31	112503-33	112503-34	112503-35	112503-36
Your Reference		AEC4SB111	AEC4SB112	AEC4SB112	AEC4SB112	AEC4SB113
Depth		0.4-0.5	0.0-0.1	0.4-0.5	0.8-0.9	0.0-0.1
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	1/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	_	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	0/					
IVICISITIE	%	13	12	8.5	19	9.3

Moisture						
Our Reference:	UNITS	112503-37	112503-39	112503-40	112503-66	112503-76
Your Reference		AEC4SB113	AEC4SB114	AEC4SB114	DUPC	AEC25 SB129
Depth		0.4-0.5	0.0-0.1	0.4-0.5	-	0.9-1.0
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	2/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	7.6	6.7	7.0	14	5.1

Moisture				
Our Reference:	UNITS	112503-89	112503-92	112503-93
Your Reference		AEC25 SB135	AEC 2 MW105	AEC 8 MW105
Depth		0.3-0.4	0.9-1.0	0.15-0.25
Date Sampled		2/07/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014
Moisture	%	7.5	15	16

Hydro AS130383 **Client Reference:**

Method ID	Methodology Summary
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA 22nd ED, 4500-F-C.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

Page 19 of 35 Envirolab Reference: 112503 R 00

Client Reference: Hydro AS130383 PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery VOCs in soil Base II Duplicate II % RPD Date extracted 07/07/2 112503-19 07/07/2014 | 07/07/2014 LCS-11 07/07/2014 014 08/07/2 LCS-11 Date analysed 112503-19 08/07/2014 | 08/07/2014 08/07/2014 014 Dichlorodifluoromethane mg/kg 1 Org-014 <1 112503-19 <1||<1 [NR] [NR] Chloromethane 1 Org-014 <1 112503-19 <1||<1 [NR] [NR] mg/kg Vinyl Chloride Org-014 112503-19 <1||<1 [NR] [NR] mg/kg 1 <1 Bromomethane mg/kg 1 Org-014 <1 112503-19 <1||<1 [NR] [NR] Chloroethane 1 Org-014 <1 112503-19 <1||<1 [NR] [NR] mg/kg Trichlorofluoromethane Org-014 112503-19 <1||<1 [NR] [NR] mg/kg 1 <1 1,1-Dichloroethene 1 Org-014 <1 112503-19 <1||<1 [NR] [NR] mg/kg trans-1,2-dichloroethene mg/kg 1 Org-014 <1 112503-19 <1||<1 [NR] [NR] Org-014 112503-19 LCS-11 114% 1,1-dichloroethane mg/kg 1 <1 <1 || <1 cis-1,2-dichloroethene 1 Org-014 <1 112503-19 <1||<1 [NR] [NR] mg/kg bromochloromethane Org-014 112503-19 [NR] [NR] mg/kg 1 <1 <1||<1 Org-014 112503-19 LCS-11 103% chloroform mg/kg 1 <1 <1 || <1 2,2-dichloropropane Org-014 112503-19 [NR] [NR] mg/kg 1 <1 <1 || <1 Org-014 112503-19 LCS-11 104% 1,2-dichloroethane mg/kg 1 <1 <1||<1 Org-014 LCS-11 111% 1,1,1-trichloroethane mg/kg 1 <1 112503-19 <1 || <1 1,1-dichloropropene mg/kg 1 Org-014 <1 112503-19 <1||<1 [NR] [NR] mg/kg Org-014 112503-19 [NR] Cyclohexane 1 <1 <1||<1 [NR] carbon tetrachloride mg/kg 1 Org-014 <1 112503-19 <1 || <1 [NR] [NR] Org-014 112503-19 Benzene mg/kg 0.2 < 0.2 <0.2 | | <0.2 [NR] [NR] [NR] mg/kg Org-014 dibromomethane 1 <1 112503-19 <1||<1 [NR] 1,2-dichloropropane mg/kg 1 Org-014 <1 112503-19 <1 || <1 [NR] [NR] Org-014 112503-19 LCS-11 93% trichloroethene mg/kg 1 <1 <1||<1 bromodichloromethane LCS-11 1 Org-014 112503-19 <1||<1 106% mg/kg <1 trans-1,3mg/kg 1 Org-014 <1 112503-19 <1 || <1 [NR] [NR] dichloropropene 112503-19 cis-1,3-dichloropropene mg/kg 1 Org-014 <1 <1||<1 [NR] [NR] 1,1,2-trichloroethane 1 Org-014 112503-19 <1||<1 [NR] [NR] mg/kg <1 Toluene mg/kg 0.5 Org-014 <0.5 112503-19 <0.5||<0.5 [NR] [NR] Org-014 1,3-dichloropropane mg/kg 1 <1 112503-19 <1||<1 [NR] [NR] dibromochloromethane Org-014 112503-19 LCS-11 106% mg/kg 1 <1 <1 || <1 1,2-dibromoethane mg/kg 1 Org-014 <1 112503-19 <1||<1 [NR] [NR] Org-014 LCS-11 tetrachloroethene mg/kg 1 <1 112503-19 <1||<1 106% Org-014 112503-19 [NR] [NR] 1,1,1,2mg/kg 1 <1 <1 || <1 tetrachloroethane chlorobenzene mg/kg 1 Org-014 <1 112503-19 <1||<1 [NR] [NR] mg/kg Ethylbenzene Org-014 <1 112503-19 <1||<1 [NR] [NR] 1 Org-014 112503-19 bromoform mg/kg 1 <1||<1 [NR] [NR] <1 m+p-xylene mg/kg 2 Org-014 <2 112503-19 <2||<2 [NR] [NR] styrene mg/kg Org-014 <1 112503-19 [NR] [NR] 1 <1 || <1 1,1,2,2mg/kg 1 Org-014 112503-19 [NR] [NR] <1 <1 || <1

Envirolab Reference: 112503 Revision No: R 00

mg/kg mg/kg 1

1

Org-014

Org-014

<1

<1

112503-19

112503-19

<1||<1

<1||<1

tetrachloroethane o-Xylene

1,2,3-trichloropropane

[NR]

[NR]

[NR]

[NR]

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in soil						Base II Duplicate II %RPD		
isopropylbenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
bromobenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
n-propyl benzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
2-chlorotoluene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
4-chlorotoluene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
tert-butyl benzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
sec-butyl benzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
4-isopropyl toluene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
n-butyl benzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
hexachlorobutadiene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
Surrogate Dibromofluorometha	%		Org-014	87	112503-19	90 111 RPD:21	LCS-11	115%
Surrogate aaa- Trifluorotoluene	%		Org-014	98	112503-19	103 106 RPD:3	LCS-11	106%
Surrogate Toluene-ds	%		Org-014	99	112503-19	100 103 RPD:3	LCS-11	101%
Surrogate 4- Bromofluorobenzene	%		Org-014	105	112503-19	102 103 RPD:1	LCS-11	107%

Client Reference: Hydro AS130383								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
SVOCs in Soil						Base II Duplicate II % RPD		Í
Date extracted	-			07/07/2 014	112503-19	7/07/2014 7/07/2014	LCS-W1	07/07/2014
Date analysed	-			10/07/2 014	112503-19	10/07/2014 10/07/2014	LCS-W1	10/07/2014
Phenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	75%
Bis-(2-chloroethyl) ether	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2-Chlorophenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	108%
1,3-Dichlorobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
1,4-Dichlorobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	78%
2-Methylphenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
1,2-Dichlorobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Bis (2-chloroisopropyl) ether	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
3/4-Methylphenol	mg/kg	2	Org-012	2	112503-19	<2 <2	[NR]	[NR]
N-nitrosodi-n- propylamine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Hexachloroethane	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Nitrobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Isophorone	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2,4-Dimethylphenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2-Nitrophenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Bis(2-chloroethoxy) methane	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2,4-Dichlorophenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
1,2,4-Trichlorobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Naphthalene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
4-Chloroaniline	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Hexachlorobutadiene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2-Methylnaphthalene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Hexachlorocyclopentadi ene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2,4,6-trichlorophenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2,4,5-trichlorophenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2-Chloronaphthalene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2-nitroaniline	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Dimethylphthalate	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	67%
2,6-Dinitrotoluene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Acenaphthylene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
3-Nitroaniline	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Acenaphthene	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	89%
2,4-dinitrophenol	mg/kg	10	Org-012	<10	112503-19	<10 <10	[NR]	[NR]
4-nitrophenol	mg/kg	10	Org-012	<10	112503-19	<10 <10	LCS-W1	67%
Dibenzofuran	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
diethylphthalate	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	87%
4- chlorophenylphenylether	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
4-nitroaniline	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]

Client Reference: Hydro AS130383									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
SVOCs in Soil						Base II Duplicate II %RPD		,	
Fluorene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
2-methyl-4,6- dinitrophenol	mg/kg	10	Org-012	<10	112503-19	<10 <10	[NR]	[NR]	
azobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
4-	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
bromophenylphenylether									
hexachlorobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
pentachlorophenol	mg/kg	10	Org-012	<10	112503-19	<10 <10	[NR]	[NR]	
Phenanthrene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
Anthracene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
carbazole	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
di-n-butylphthalate	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
Fluoranthene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
Pyrene	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	80%	
butylbenzylphthalate	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
bis(2-ethylhexyl) phthalate	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
Benzo(a)anthracene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
Chrysene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
di-n-octylphthalate	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
Benzo(b)fluoranthene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
Benzo(k)fluoranthene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
Benzo(a)pyrene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
Indeno(1,2,3-c,d)pyrene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
Dibenzo(a,h)anthracene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
Benzo(g,h,i)perylene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
ethylmethanesulfonate	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
aniline	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
pentachloroethane	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
benzyl alcohol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
acetophenone	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
N-nitrosomorpholine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
N-nitrosopiperidine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
2,6-dichlorophenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
hexachloropropene-1	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
N-nitroso-n-butylamine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
safrole	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
1,2,4,5- tetrachlorobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
cis and trans iso-safrole	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
1,3-dinitrobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
pentachlorobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
1-naphthylamine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
2,3,4,6-tetrachlorophenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
2-naphthylamine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	
5-nitro-o-toluidine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]	

		Clie	nt Referenc	e: H	lydro AS1303	83		_
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
SVOCs in Soil						Base II Duplicate II %RPD		
diphenylamine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
phenacetin	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
pentachloronitrobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
dinoseb	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
methapyrilene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
p- dimethylaminoazobenzen e	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2-acetylaminofluorene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
7,12-dimethylbenz(a) anthracene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
3-methylcholanthrene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
a-BHC	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
b-BHC	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
g-BHC	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
d-BHC	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Heptachlor	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Aldrin	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	84%
Heptachlor Epoxide	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
g-Chlordane	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
a-Chlordane	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Endosulfan I	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
p,p'-DDE	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Dieldrin	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	74%
Endrin	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
p,p'-DDD	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Endosulfan II	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
p,p'-DDT	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Methoxychlor	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Surrogate 2-fluorophenol	%		Org-012	122	112503-19	125 131 RPD:5	LCS-W1	124%
Surrogate Phenol-de	%		Org-012	133	112503-19	131 139 RPD: 6	LCS-W1	131%
Surrogate Nitrobenzene-d5	%		Org-012	116	112503-19	101 112 RPD:10	LCS-W1	69%
Surrogate 2- fluorobiphenyl	%		Org-012	124	112503-19	127 125 RPD: 2	LCS-W1	115%
Surrogate 2,4,6- Tribromophenol	%		Org-012	78	112503-19	104 109 RPD:5	LCS-W1	78%
Surrogate p-Terphenyl- d ₁₄	%		Org-012	102	112503-19	105 105 RPD:0	LCS-W1	93%

Client Reference: Hydro AS130383									
QUALITY CONTROL PAHs in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery	
Date extracted	-			07/07/2 014	112503-3	7/07/2014 7/07/2014	LCS-11	07/07/2014	
Date analysed	-			07/07/2 014	112503-3	8/07/2014 8/07/2014	LCS-11	07/07/2014	
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	<0.1 <0.1	LCS-11	105%	
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	<0.1 <0.1	[NR]	[NR]	
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	0.6 0.5 RPD:18	[NR]	[NR]	
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	0.3 0.2 RPD:40	LCS-11	103%	
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	3.8 3.1 RPD: 20	LCS-11	112%	
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	0.7 0.6 RPD:15	[NR]	[NR]	
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	13 10 RPD:26	LCS-11	107%	
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	12 10 RPD:18	LCS-11	109%	
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	11 8.4 RPD:27	[NR]	[NR]	
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	11 9.0 RPD:20	LCS-11	108%	
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	112503-3	25 22 RPD:13	[NR]	[NR]	
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	112503-3	15 12 RPD:22	LCS-11	113%	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	14 12 RPD:15	[NR]	[NR]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	1.4 1.4 RPD:0	[NR]	[NR]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	12 10 RPD:18	[NR]	[NR]	
Surrogate p-Terphenyl- d14	%		Org-012 subset	81	112503-3	97 105 RPD: 8	LCS-11	99%	

Hydro AS130383 Client Reference: UNITS PQL QUALITYCONTROL METHOD Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery Base II Duplicate II %RPD Miscellaneous Inorg - soil 09/07/2 08/07/2014 || 08/07/2014 LCS-1 Date prepared 112503-1 08/07/2014 014 09/07/2 09/07/2014||09/07/2014 09/07/2014 Date analysed 112503-1 LCS-1 014 Fluoride (1:5 soil:water) Inorg-026 94||93||RPD:1 LCS-1 0.5 < 0.5 112503-1 102% mg/kg QUALITYCONTROL UNITS PQL METHOD Blank Moisture Date prepared [NT] Date analysed INTI

Date analysed	-		[NT]		
Moisture	%	0.1 Inorg-008	[NT]		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
VOCs in soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	112503-92	07/07/2014
Date analysed	-	[NT]	[NT]	112503-92	08/07/2014
Dichlorodifluoromethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Chloromethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	mg/kg	[NT]	[NT]	[NR]	[NR]
Bromomethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Chloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	mg/kg	[NT]	[NT]	[NR]	[NR]
trans-1,2-dichloroethene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1-dichloroethane	mg/kg	[NT]	[NT]	112503-92	125%
cis-1,2-dichloroethene	mg/kg	[NT]	[NT]	[NR]	[NR]
bromochloromethane	mg/kg	[NT]	[NT]	[NR]	[NR]
chloroform	mg/kg	[NT]	[NT]	112503-92	115%
2,2-dichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	mg/kg	[NT]	[NT]	112503-92	117%
1,1,1-trichloroethane	mg/kg	[NT]	[NT]	112503-92	123%
1,1-dichloropropene	mg/kg	[NT]	[NT]	[NR]	[NR]
Cyclohexane	mg/kg	[NT]	[NT]	[NR]	[NR]
carbon tetrachloride	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
dibromomethane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
trichloroethene	mg/kg	[NT]	[NT]	112503-92	103%
bromodichloromethane	mg/kg	[NT]	[NT]	112503-92	116%
trans-1,3-dichloropropene	mg/kg	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Toluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]

		Client Reference	e: Hydro AS130383		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
VOCs in soil			Base + Duplicate + %RPD		
dibromochloromethane	mg/kg	[NT]	[NT]	112503-92	116%
1,2-dibromoethane	mg/kg	[NT]	[NT]	[NR]	[NR]
tetrachloroethene	mg/kg	[NT]	[NT]	112503-92	122%
1,1,1,2-tetrachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
chlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
bromoform	mg/kg	[NT]	[NT]	[NR]	[NR]
m+p-xylene	mg/kg	[NT]	[NT]	[NR]	[NR]
styrene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1,2,2-tetrachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
o-Xylene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,3-trichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
isopropylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
bromobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
tert-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
sec-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
hexachlorobutadiene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluorometha	%	[NT]	[NT]	112503-92	120%
Surrogate aaa- Trifluorotoluene	%	[NT]	[NT]	112503-92	104%
Surrogate Toluene-d8	%	[NT]	[NT]	112503-92	101%
Surrogate 4- Bromofluorobenzene	%	[NT]	[NT]	112503-92	104%

		Client Reference	e: Hydro AS130383		
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
SVOCs in Soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	112503-93	07/07/2014
Date analysed	-	[NT]	[NT]	112503-93	10/07/2014
Phenol	mg/kg	[NT]	[NT]	112503-93	90%
Bis-(2-chloroethyl) ether	mg/kg	[NT]	[NT]	[NR]	[NR]
2-Chlorophenol	mg/kg	[NT]	[NT]	112503-93	118%
1,3-Dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,4-Dichlorobenzene	mg/kg	[NT]	[NT]	112503-93	84%
2-Methylphenol	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-Dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
Bis (2-chloroisopropyl) ether	mg/kg	[NT]	[NT]	[NR]	[NR]
3/4-Methylphenol	mg/kg	[NT]	[NT]	[NR]	[NR]
N-nitrosodi-n-propylamine	mg/kg	[NT]	[NT]	[NR]	[NR]
Hexachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Nitrobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
Isophorone	mg/kg	[NT]	[NT]	[NR]	[NR]
2,4-Dimethylphenol	mg/kg	[NT]	[NT]	[NR]	[NR]
2-Nitrophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
Bis(2-chloroethoxy) methane	mg/kg	[NT]	[NT]	[NR]	[NR]
2,4-Dichlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4-Trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
Naphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-Chloroaniline	mg/kg	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-Methylnaphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
Hexachlorocyclopentadiene	mg/kg	[NT]	[NT]	[NR]	[NR]
2,4,6-trichlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
2,4,5-trichlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
2-Chloronaphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-nitroaniline	mg/kg	[NT]	[NT]	[NR]	[NR]
Dimethylphthalate	mg/kg	[NT]	[NT]	112503-93	81%
2,6-Dinitrotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]
3-Nitroaniline	mg/kg	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	[NT]	[NT]	112503-93	80%
2,4-dinitrophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
4-nitrophenol	mg/kg	[NT]	[NT]	112503-93	76%
Dibenzofuran	mg/kg	[NT]	[NT]	[NR]	[NR]
diethylphthalate	mg/kg	[NT]	[NT]	112503-93	93%
4-chlorophenylphenylether	mg/kg	[NT]	[NT]	[NR]	[NR]
4-nitroaniline	mg/kg	[NT]	[NT]	[NR]	[NR]

Client Reference: Hydro AS130383

		Client Reference	e: Hydro AS130383		
QUALITY CONTROL SVOCs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Fluorene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-methyl-4,6-dinitrophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
azobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-bromophenylphenylether	mg/kg	[NT]	[NT]	[NR]	[NR]
hexachlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
pentachlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
Phenanthrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
carbazole	mg/kg	[NT]	[NT]	[NR]	[NR]
di-n-butylphthalate	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Pyrene	mg/kg	[NT]	[NT]	112503-93	75%
butylbenzylphthalate	mg/kg	[NT]	[NT]	[NR]	[NR]
bis(2-ethylhexyl)phthalate	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	[NT]	[NT]	[NR]	[NR]
di-n-octylphthalate	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(b)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]
ethylmethanesulfonate	mg/kg	[NT]	[NT]	[NR]	[NR]
aniline	mg/kg	[NT]	[NT]	[NR]	[NR]
pentachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
benzyl alcohol	mg/kg	[NT]	[NT]	[NR]	[NR]
acetophenone	mg/kg	[NT]	[NT]	[NR]	[NR]
N-nitrosomorpholine	mg/kg	[NT]	[NT]	[NR]	[NR]
N-nitrosopiperidine	mg/kg	[NT]	[NT]	[NR]	[NR]
2,6-dichlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
hexachloropropene-1	mg/kg	[NT]	[NT]	[NR]	[NR]
N-nitroso-n-butylamine	mg/kg	[NT]	[NT]	[NR]	[NR]
safrole	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4,5-tetrachlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
cis and trans iso-safrole	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3-dinitrobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
pentachlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1-naphthylamine	mg/kg	[NT]	[NT]	[NR]	[NR]
2,3,4,6-tetrachlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
2-naphthylamine	mg/kg	[NT]	[NT]	[NR]	[NR]
5-nitro-o-toluidine	mg/kg	[NT]	[NT]	[NR]	[NR]

		Client Reference	e: Hydro AS130383		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
SVOCs in Soil			Base + Duplicate + %RPD		
diphenylamine	mg/kg	[NT]	[NT]	[NR]	[NR]
phenacetin	mg/kg	[NT]	[NT]	[NR]	[NR]
pentachloronitrobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
dinoseb	mg/kg	[NT]	[NT]	[NR]	[NR]
methapyrilene	mg/kg	[NT]	[NT]	[NR]	[NR]
p- dimethylaminoazobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-acetylaminofluorene	mg/kg	[NT]	[NT]	[NR]	[NR]
7,12-dimethylbenz(a) anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
3-methylcholanthrene	mg/kg	[NT]	[NT]	[NR]	[NR]
a-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
b-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
g-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
d-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
Heptachlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	[NT]	[NT]	112503-93	88%
Heptachlor Epoxide	mg/kg	[NT]	[NT]	[NR]	[NR]
g-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
a-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]
p,p'-DDE	mg/kg	[NT]	[NT]	[NR]	[NR]
Dieldrin	mg/kg	[NT]	[NT]	112503-93	82%
Endrin	mg/kg	[NT]	[NT]	[NR]	[NR]
p,p'-DDD	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]
p,p'-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	[NT]	[NT]	[NR]	[NR]
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate 2-fluorophenol	%	[NT]	[NT]	112503-93	119%
Surrogate Phenol-de	%	[NT]	[NT]	112503-93	128%
Surrogate Nitrobenzene- d ₅	%	[NT]	[NT]	112503-93	109%
Surrogate 2-fluorobiphenyl	%	[NT]	[NT]	112503-93	121%
Surrogate 2,4,6- Tribromophenol	%	[NT]	[NT]	112503-93	113%
Surrogate p-Terphenyl- d ₁₄	%	[NT]	[NT]	112503-93	102%

Client Reference: Hydro AS130383 QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery PAHs in Soil Base + Duplicate + %RPD 7/07/2014 | 7/07/2014 Date extracted 112503-19 LCS-12 07/07/2014 Date analysed 112503-19 8/07/2014 | 8/07/2014 LCS-12 07/07/2014 Naphthalene 112503-19 0.2||0.2||RPD:0 LCS-12 107% mg/kg Acenaphthylene mg/kg 112503-19 <0.1||<0.1 [NR] [NR] Acenaphthene mg/kg 112503-19 0.4 | | 0.4 | | RPD: 0 [NR] [NR] 107% Fluorene 112503-19 0.2 | | 0.1 | | RPD: 67 LCS-12 mg/kg Phenanthrene 0.2 || 0.1 || RPD: 67 LCS-12 114% mg/kg 112503-19 Anthracene mg/kg 112503-19 <0.1||<0.1 [NR] [NR] Fluoranthene 112503-19 0.1 || 0.1 || RPD: 0 LCS-12 110% mg/kg LCS-12 Pyrene mg/kg 112503-19 0.1||<0.1 112% Benzo(a)anthracene 112503-19 <0.1||<0.1 [NR] [NR] mg/kg Chrysene mg/kg 112503-19 <0.1||<0.1 LCS-12 106% Benzo(b+k)fluoranthene mg/kg 112503-19 <0.2 | | <0.2 [NR] [NR] LCS-12 Benzo(a)pyrene 112503-19 <0.05 || <0.05 116% mg/kg 112503-19 Indeno(1,2,3-c,d)pyrene mg/kg <0.1||<0.1 [NR] [NR] [NR] [NR] Dibenzo(a,h)anthracene 112503-19 <0.1||<0.1 mg/kg Benzo(g,h,i)perylene mg/kg 112503-19 <0.1||<0.1 [NR] [NR] Surrogate p-Terphenyl-d14 % 112503-19 94||95||RPD:1 LCS-12 101% QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery Miscellaneous Inorg - soil Base + Duplicate + %RPD Date prepared 112503-13 08/07/2014 | 08/07/2014 LCS-2 08/07/2014 Date analysed 112503-13 09/07/2014 | 09/07/2014 LCS-2 09/07/2014 Fluoride (1:5 soil:water) 34 || 27 || RPD: 23 LCS-2 104% mg/kg 112503-13 QUALITYCONTROL **UNITS** Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery Base + Duplicate + %RPD PAHs in Soil 7/07/2014 | 7/07/2014 Date extracted 112503-28 112503-4 07/07/2014 Date analysed 112503-28 8/07/2014 | 8/07/2014 112503-4 07/07/2014 112503-4 Naphthalene 112503-28 <0.1||<0.1 87% mg/kg Acenaphthylene 112503-28 <0.1||<0.1 [NR] [NR] mg/kg Acenaphthene mg/kg 112503-28 <0.1||<0.1 [NR] [NR] Fluorene 112503-28 <0.1||<0.1 112503-4 100% mg/kg Phenanthrene mg/kg 112503-28 <0.1||<0.1 112503-4 107% Anthracene mg/kg 112503-28 <0.1||<0.1 [NR] [NR] Fluoranthene mg/kg 112503-28 <0.1||<0.1 112503-4 106% 112503-4 108% Pyrene 112503-28 <0.1||<0.1 mg/kg Benzo(a)anthracene 112503-28 <0.1||<0.1 [NR] [NR] mg/kg Chrysene mg/kg 112503-28 0.1 || 0.1 || RPD: 0 112503-4 101% Benzo(b+k)fluoranthene 112503-28 <0.2||<0.2 [NR] [NR] mg/kg

Envirolab Reference: 112503 Revision No: R 00

mg/kg

mg/kg

mg/kg

mg/kg

Benzo(a)pyrene

Indeno(1,2,3-c,d)pyrene

Dibenzo(a,h)anthracene

Benzo(g,h,i)perylene

112503-28

112503-28

112503-28

112503-28

<0.05||<0.05

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

112503-4

[NR]

[NR]

[NR]

114%

[NR]

[NR]

[NR]

Client Reference: Hydro AS130383

		Client Referenc	e: Hydro AS130383		
QUALITY CONTROL PAHs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Surrogate p-Terphenyl-d14	%	112503-28	107 109 RPD:2	112503-4	100%
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	112503-28	08/07/2014 08/07/2014	LCS-3	08/07/2014
Date analysed	-	112503-28	09/07/2014 09/07/2014	LCS-3	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	112503-28	2.9 3.1 RPD:7	LCS-3	102%
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	112503-93	07/07/2014
Date analysed	-	[NT]	[NT]	112503-93	07/07/2014
Naphthalene	mg/kg	[NT]	[NT]	112503-93	94%
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	[NT]	[NT]	112503-93	101%
Phenanthrene	mg/kg	[NT]	[NT]	112503-93	86%
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	[NT]	[NT]	112503-93	#
Pyrene	mg/kg	[NT]	[NT]	112503-93	64%
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	[NT]	[NT]	112503-93	#
Benzo(b+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	[NT]	[NT]	112503-93	#
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	112503-93	98%

Hydro AS130383 Client Reference: QUALITYCONTROL UNITS Dup.Sm# Duplicate Spike Sm# Spike % Recovery Base + Duplicate + %RPD Miscellaneous Inorg - soil Date prepared 112503-54 08/07/2014 || 08/07/2014 112503-2 08/07/2014 Date analysed 112503-54 09/07/2014 || 09/07/2014 112503-2 09/07/2014 Spike % Recovery 08/07/2014 09/07/2014 #

Fluoride (1:5 soil:water)	mg/kg	112503-54	87 88 RPD:1	112503-2
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#
Miscellaneous Inorg - soil			Base + Duplicate + %RPD	
Date prepared	-	112503-68	08/07/2014 08/07/2014	112503-69
Date analysed	-	112503-68	09/07/2014 09/07/2014	112503-69
Fluoride (1:5 soil:water)	mg/kg	112503-68	<0.5 <0.5	112503-69
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	
Miscellaneous Inorg - soil			Base + Duplicate + %RPD	
Date prepared	-	112503-81	08/07/2014 08/07/2014	
5	İ			
Date analysed	-	112503-81	09/07/2014 09/07/2014	
Pluoride (1:5 soil:water)	- mg/kg	112503-81 112503-81	09/07/2014 09/07/2014 2.3 2.2 RPD:4	
,	- mg/kg			
,	- mg/kg			

Client Reference: Hydro AS130383

Report Comments:

PAH (IN SOIL) # Percent recovery is not possible to report as the high concentration of analytes in the sample/s have caused interference.

Fluoride(1:5 soil:water): # Percent recovery is not possible to report as the high concentration of analytes in the sample/s have caused interference.

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 112503 Page 34 of 35 Revision No: R 00

Client Reference: Hydro AS130383

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 112503 Page 35 of 35 Revision No: R 00

Aileen Hie

From:

Kirsty Greenfield [kgreenfield@environcorp.com]

Sent:

Monday, 14 July 2014 10:51 AM

To:

Aileen Hie

Subject:

Your reference 112590

Hi Aileen,

Based on the results in your batch 112590, I'd like to organise additional PAH analysis for the following samples (currently on hold):

HA106 0.15, 49

HA107 0.2 -164

HA115 0.2-0.3 - 12 | HA116 0.3-0.4 - 12 |

HA117 0.25-0.35

Thanks,

112590 A Std = /A de 21/7

Kirsty Greenfield | Environmental Consultant

ENVIRON Australia Pty Ltd Eastpoint Complex | Suite 19B, Level 2 50 Glebe Road | The Junction, NSW 2291

T: 02 4962 5444| F: 02 4962 5888 | M: 0407 149 176

kgreenfield@environcorp.com

This message contains information that may be confidential, privileged or otherwise protected by law from disclosure. It is intended for the exclusive use of the Addressee(s). Unless you are the addressee or authorized agent of the addressee, you may not review, copy, distribute or disclose to anyone the message or any information contained within. If you have received this message in error, please contact the sender by electronic reply to enail@environcorp.com and immediately delete all copies of the message.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

112590-A

Client:

Environ (Newcastle)
Suite 19B, Level 2
50 Glebe Rd
The Junction
NSW 2291

Attention: Kate Woods, Kirsty Greenfield

Sample log in details:

Your Reference: AS 130383

No. of samples: Additional testing on soils

Date samples received / completed instructions received 4/7/2014 / 14/07/14

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 21/07/14 / 17/07/14

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Laboratory Manager

PAHs in Soil						
Our Reference:	UNITS	112590-A-99	112590-A-	112590-A-	112590-A-	112590-A-
			104	121	124	126
Your Reference		HA106	HA107	HA115	HA116	HA117
Depth		0.15	0.2	0.2-0.3	0.3-0.4	0.25-0.35
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Naphthalene	mg/kg	<0.1	0.4	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.7	8.3	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.3	3.6	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	6.3	68	2.2	0.2	<0.1
Anthracene	mg/kg	1.3	11	0.6	<0.1	<0.1
Fluoranthene	mg/kg	20	220	40	3.4	0.3
Pyrene	mg/kg	19	220	50	3.4	0.3
Benzo(a)anthracene	mg/kg	14	150	61	3.1	0.2
Chrysene	mg/kg	13	130	110	5.8	0.3
Benzo(b+k)fluoranthene	mg/kg	30	290	230	12	0.8
Benzo(a)pyrene	mg/kg	18	180	44	1.7	0.26
Indeno(1,2,3-c,d)pyrene	mg/kg	15	150	44	2.9	0.3
Dibenzo(a,h)anthracene	mg/kg	2.0	16	15	0.7	<0.1
Benzo(g,h,i)perylene	mg/kg	14	130	42	2.9	0.3
Benzo(a)pyrene TEQ NEPM B1	mg/kg	26	260	94	4.0	<0.5
Total+ve PAH's	mg/kg	150	1,600	640	37	2.8
Surrogate p-Terphenyl-d14	%	95	96	98	105	96

Moisture						
Our Reference:	UNITS	112590-A-99	112590-A-	112590-A-	112590-A-	112590-A-
			104	121	124	126
Your Reference		HA106	HA107	HA115	HA116	HA117
Depth		0.15	0.2	0.2-0.3	0.3-0.4	0.25-0.35
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Moisture	%	6.2	14	7.5	6.3	8.0

Method ID	Methodology Summary
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

Envirolab Reference: 112590-A Page 4 of 8

		Clie	ent Reference	e: A	S 130383			
QUALITY CONTROL PAHs in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
PARSITSOIL						Base ii Dupiicate ii %KFD		
Date extracted	-			16/07/2 014	[NT]	[NT]	LCS-2	16/07/2014
Date analysed	-			16/07/2 014	[NT]	[NT]	LCS-2	16/07/2014
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	94%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	89%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	91%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	92%
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	93%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	87%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS-2	98%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	111	[NT]	[NT]	LCS-2	92%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank
Moisture				
Date prepared	-			16/07/2 014
Date analysed	-			16/07/2 014
Moisture	%	0.1	Inorg-008	[NT]

Envirolab Reference: 112590-A

Report Comments:

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 112590-A Page 7 of 8

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 112590-A Page 8 of 8

00/2

(PW 12 10 4 8 50 CAN TOV Fax: mation Date sampled	ENVIROLAB SERVICES Glient Project Name and Number: AS [30 38 3] Client Project Name and Number: AS [30 38 3] Po No.: AS [30 38 3] Po No.: AS [30 38 3] Po No.: AS [30 38 3] Po No.: AS [30 38 3] Po No.: Date results required: Or choose (standard) 1 day / 3 day Note: information Note: information So P No. No.: Institute applies So P No. No.: Institute applies So P No.: AN X X X X X X X X X X X X X X X X X X	NIR OF CHOOS Surchards A X X X X X X X X X X X X X X X X X X	WIROLAB SE CLIENT Project Name of AS (30) Se Constitution and the results required or choose; standard or	STEX Supering State of the stat	Client Project Name and Number: AS (30 383 Po No.: Envirolab Services Quote No.: Date results required: Or chooses (standard) 1 day / 2 day / 3 day Note: Inform lab in 36/ance if urgent tumaround is required- surcharge applies X X X X X X X X X X X X X X X X X X X	C Si Si Si Si Si Si Si Si Si Si Si Si Si	OF CUSTODY - Client NVIROLAB SERVICES Client Project Name and Number: 45 (30 38 3 Po No.: Bate results required: or chooses (standard) 1 day / 2 day / 3 day Note: Inform lab in 30 ance to urgent tumaround is required. Surcharge applies X X X X X X X X X X X X X X X X X X			Envirolab Servicator St. Chats 12 Ashley St, Chats Phone: 02 9910 62 E-mail: ahie@envirolab Servicator Aileen Hie Contact: Aileen Hie 12 Ashley St 12 Ashley St 12 Ashley St 12 Ashley St 12 Sarvicator Servicator Aileen Hie 22 Ashley St 12 Sarvicator Aileen Hie 23 Ashley St 12 Sarvicator Aileen Hie 24 Ashley St 24 Ashley St 25 Ashley St 26 Ashley St 27 Ashley St	Envirolab Services 12 Ashley St, Chatswo Phone: 02 9910 6200 Fax: 02 9910 6201 E-mail: ahie@envirola Contact: Aileen Hie 12 Services 12 Ashley St 12 Services 12 Ashley St 12 Services 12 Services 12 Services 12 Services 12 Services 12 Services 12 Services 12 Services 12 Services 12 Services 13 Services 14 Services 15	vood, NS	Envirolab Services 12 Ashley St, Chatswood, NSW, 2067 Phone: 02 9910 6200 Fax: 02 9910 6201 Contact: Aileen Hie Comments Contact: Aileen Hie Sample as you can information about the sample as you can inform	
72 115				T X		X	+		Cesurity:	y: ntacon	roken	9		HOLD	
Relinquished by (company): Print Name: Carle Mo Date & Time: Z p M Z Signature: Labor	\$1/t		Received by (Print Name: Date & Time: Signature:	Received by (company): Print Name: Date & Time: Signature:	mpany)	4/7/	14 S S T T	00.	1	Samp	es Receive rature Re orted by:	Samples Received: Cool or Ambient (circk Temperature Recieved at: (if app Transported by: Hand delivered / courier Page No:	r Ambient ivered / c	Samples Received: Cool or Ambient (circle one) Temperature Recieved at: (if applicable) Transported by: Hand delivered / courier Page No:	

	12		CHAIN	OF	2	ST	00)- \	OF CUSTODY - Client	nt						A Partie
	Š		E	AVIE	SOLA	IB SI	NVIROLAB SERVICES	CES								CIIVICOIAU
Client: ENVI Project Mgr: K/r/5	AU Gree	ntielo		Client	Project S (Name SO	Client Project Name and Number: AS 130 383	ber:				Envi 12 As	rolab	Envirolab Services 12 Ashley St. Chatswo	S rood. NS	Envirolab Services 12 Ashley St. Chatswood. NSW. 2067
Sampler: Kare	Moods	-		PO No.:												
Address: Level 2	Such	7B, Sc	sit 19B, SOGIESER	Enviro	lab Sen	vices Qu	Envirolab Services Quote No.:					Phon	e: 02 9	Phone: 02 9910 6200	0	
Fmail: Kardeins	Colde	00.00	(a) 00.450 W Octo CO	Date r	Date results required:	equired	. وو				-	F ах:	029	02 9910 6201	=	
7	25444	Fax:	and design	Or cho Note: In Surchary	Or choose: st. Note: Inform lab II surcharge applies	andard n advanca	/ 1 day	Or choose: standard// 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is requir surcharge applies	Or chooses' standard// 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - surcharge applies	,		E-ma Conta	il: ahir ict: Ailk	E-mail: ahie@envirol Contact: Aileen Hie	labserv	E-mail: ahie@envirolabservices.com.au Contact: Aileen Hie
	Sample information	nation	i de la companya de l	4	-COM DO	203	1		Tests	Tests Required	-					Comments
Envirolab Client	Client Sample ID	Date sampled	Type of sample	-Shakam d	HdI	DIEX	- s HAY	201102							-	Provide as much information about the sample as you can
16 TP111	0-1-0	0.3		X	X	X	X			+	+		\dagger	+	+	
9	7			×	X	X	X			$\frac{1}{1}$	_		\dagger		+	
A SO SO				×	X	X	X				-		+	F	+	
10 00	×17			X	X	X	ا الا				H				-	
0,01	20			X			X				$ \cdot $					
2 - 2	377			X	X	T K	7			+	+		\forall		H	
23 TP 1	27			×	X	X	\ \ \	\		+	+		+	+	1	4010
700	22			X	K	X	\ \ \	V			-		+	+	+	
35	77			X	X	<u></u>	K			H			H			
10+46	20			X			X.		1	+	+					
101 35	27			X	ر دلا	2	XV VV			+	-	#	+	+	+	112590
29 1012	SSUGACE						-		\perp	+	+	1	+	+	7	4
STILL 128	101			X	K	, V				Н	\mathbb{H}		-	-		000
ور ور		7		Receiv	Received by (company):	ompan	ä	EL	S			Sample	s Receiv	d: Cool or	Ambient	Samples Received: Cool or Ambient (circle one)
Print Name: CON	3	2000		Print Name:	ame:			183	~			Temper	ature Re	Temperature Recieved at:		(if applicable)
Signature.	1	417		Date & Time:	Time:		14	4/14	12	00		Transpo	orted by:	Transported by: Hand delivered / courier	vered / α	ourier
A LA	CORT			Signature:	Ire:			A	\				200		Pag	Page No:

		CHAIN	OF	5	ST	00	OF CUSTODY - Client	Clie	int				,	(L)	4
900			NVI	SOLA	ENVIROLAB SERVICES	RVI	CES							5	(Religion)
Client: ENVIKON Project Mgr: KIrSM GICE	onfielo		Gient	Project S (Client Project Name and Number: AS 130383	DU CO	nber:				Envir 12 Ash	Envirolab Services	rvices	Envirolab Services	63
4	500											, ha (a		od lacal for	
ve(2/	_	SOGIEBERA	ASSESSMENT OF THE PARTY NAMED IN	lab Sen	Envirolab Services Quote No. :	ote No.					Phone	Phone: 02 9910 6200	0 6200		
Email: Varior Chon	000.00	2000		Date results required	equired						Fa x:	02 9910 6201	0 6201		
(0) m(1)		a crivir ovicap-com	The same of	form lab.	andard	/ 1 day	Or choose: standard) 1 day / 2 day / 3 day Note: Inform lab in advance if urgent tumaround is required	3 day	- F		E-mail	ahie@	envirola	E-mail: ahie@envirolabservices.com.au	m.au
Sample inform	rax:		surchan	surcharge applies	2						Contac	Contact: Aileen Hie	Hie Hie		
	marion		Y	00 WD	8			Test	Tests Required		1			8	Comments
Envirolab Client Sample ID	Date	Type of sample	5/2/2	HOLL	43/5	× 1111	person							Provi informat sample	Provide as much information about the sample as you can
31 TP128-02			×	٧	1/2	+			+	1	\dagger	+	\dagger		
32 TP128 -0.4				1	-	}	1	I		-		+	+	107	4.
3 76129			X	×	×	×				-	+	+	$\frac{1}{2}$	707	7
Z4 TP129 0-6-0-1												-		Lol	0
10H a			×	X	X X							-		1	
1000			×	×		X									
			X	X	X	X									
29 10 12 05-05			X	X	T K	7	1				+				
132				\dagger	+	+	+		+		+	+	1	405	
TP 132 0 · 1			X	K	X	X			+		T	+	1	101	
(52 0			-											JOH	
10 127 0-8			X	X		7	1		+		$\mid \mid$			(125	90
45 TP 133 Surface	۵			+	+	+	+		+	1	+	1	1	HOL	4
Relinquished by (company):			l social			1	P	0	-	T	1	-	1	D L	5
3	2000		Drint P	of to pa	Drint Marco		0				Samples	Received:	Cool or Ar	Samples Received: Cool or Ambient (circle one)	ne)
1e: 12 prof 221	41/4		Date & Time:	Time:			3/2	(17	12.00		Tempera	Temperature Recieved at:	ved at:	(if applicable)	(apple)
Signature: Kin hocks	-		Signature:	ية				1	\ I		ranspor	ted by: Hi	and delive	Iransported by: Hand delivered / courier	
							X		The second second second second					Page No:	

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

			CHAIN	OF	2	ST	00	OF CUSTODY - Client	Clie	int						4
A			EN	NVIE	SOL	B SI	R	VIROLAB SERVICES								CIIAILOIGA
Client:	NVIKON LITSHY GIVE	ntiplo		Client	Project -S	Client Project Name and Number: $ASISOS83$	P CO	Sper:				Env 12 A	irolab	Envirolab Services	ces	Envirolab Services 12 Ashley St. Chatswood NSW 2067
Sampler: /	4				ا:								()		, and and	7007
Address: Leve	el 2 / Such 19B		SOGIEDERA	NAME OF TAXABLE PARTY.	lab Ser	Envirolab Services Quote No. :	ote No	;				Phon	e: 02 5	Phone: 02 9910 6200	200	
Email: Kara	Karlentold Co	00000	(a) 00.4 c) (1 000 c)	The Real Property lies	esufts	Date results required						Fax:	02	02 9910 6201	201	
_	1997 (19 (co)		NCap-Con	The same of	form lab	andard	/ 1 day	Or choose: standard// 1 day / 2 day / 3 day Note: Inform lab in advance if urgent tumaround is required -	/ 3 day	- P		E-ma	il: ahi	e@envi	rolabser	E-mail: ahie@envirolabservices.com.au
	1 5	akion		surchar	surcharge applies							Cont	act: Ail	Contact: Aileen Hie	0	
	Dilling and make	lation		4	0 20 20 20 20	8			Test	Tests Required	pa					Comments
Envirolab Sample ID	Client Sample ID	Date	Type of sample	SMADINS	HOLL	12LG	> HA9	Thoride								Provide as much information about the sample as you can
911	2.0-1-0.521			×	>	3	1	1	I	\dagger	+	1	+	+	1	
力上				!	4	1	1	X			+	1	+	+		
48 TP	P134 0-12				+	+	+	-	I	\dagger	+	1	+	+	#	HOLLY
47 617	P134 0.2			X	X	X	X X	\ \ \	T	+	+	1	\dagger	+	#	HOUCE
2 2	7.34 0.4				+	-	+	+	I	\dagger	+	Ţ	+	+	#	4 101
2	135 Sudace				T	T	+	-		\dagger	+	1	\dagger	+	#	4000
2	38			×	×	×		Y		T	+	1	\dagger	+	+	HOLD
2	135 (\vdash		-		+	+	I	\dagger	+	+	47
	35 0						\vdash				-		+	-		707
300	120			X	X	X		~					\vdash	\vdash		772
38	126 0.7			X	X	X	7							\parallel		
2 00	13,00				\dagger	+	+	+		+	+		\dashv			HOLD
800	10A2a			>	1	-	+	4		+	+	1	+	-		HOLD
60 1	2137 Surface			4	X	X	X	\ \ \	1	\dagger	+		+	+		112590
Relinquished by (company):	(company):] and		-	۱,	-			-	1	1	-		HOLL
Print Name: /	3	2000		Dist of	N 100	neceived by (Company):		10,0	200			Sample	s Receiv	red: Cool	or Ambien	Samples Received: Cool or Ambient (circle one)
Date & Time:	021	4/16		Date & Time:	Time:			15/3/	111	0	6	Tempe	rature R	Temperature Recieved at:	ī.	(if applicable)
Signature:	Kus (books .	+		Signatu	in in					7.0	0	Transp	orted by	: Hand d	Transported by: Hand delivered / courier	courier
				Signature:					1						ă	Page No:

			CHAIN	OF	2	ST	OF CUSTODY - Client	-	Sie	nt							Acloshi
			ij	NVIE	SOL	NB SI	ENVIROLAB SERVICES	CES								3/	
Client: Project Mgr:	KITSH Gree	ntiplo		Client	Project -S	30	Client Project Name and Number: $AS /30383$	ber:				En.	virolal Ashlev	Envirolab Services	rices	Envirolab Services 12 Ashlev St. Chatswood. NSW. 2067	
Sampler:	Kate Moods																;
Address: Lev	wel 2 / Suite 1918	-	Societera	THE OWNER OF THE OWNER OF	lab Ser	vices Qu	Envirolab Services Quote No.:					Pho	ne: 02	Phone: 02 9910 6200	5200		
d 7	Junchon	0,00			esults	Date results required	٠					Fax:	: 02	02 9910 6201	6201		
Phone: (07)	19625444	Fax:	CANTONCOP-COM Fax:		Or choose: st. Note: Inform lab In	in advance	Or choose: standard) 1 day / 2 day / 3 day Note: Inform lab in advance if urgent tumaround is required - surctance applies	/ 2 day /	3 day is required	1-		E 1	ail: ah	E-mail: ahie@envir	virolab	E-mail: ahie@envirolabservices.com.au	m.au
	5	nation		9	Combo 3	M	1		Tests	Tests Required	pa	3	7			3	
Envirolab Sample ID	Client Sample ID	Date	Type of sample	Staton	Hd	XZI	> HX	PLIAN								Provi informal sample	Provide as much information about the sample as you can
as M	7.00.57			3	1	9	7				\dashv	\dashv		\dashv	_		
90	77			Y	X	K	X			1							
62	15 0-4 15 0-6			1	7	-	1	1		\dagger	+			$\mid \cdot \mid$	\parallel	HOI	9
19	138 Su			1	1	4	4	+		+	+	+	1	+	+		
59					T	\dagger	+	1		\dagger	+	+	1	+	+	25	7-
99:	138 0			X	X	k	X				+	+			+	[] T	
200	10 88 0.4				1								-	H	•	Ho	2
05	10 150 Surface				T	\dagger	+	1		+	+	-		+	+	9:	
90	1			X	×	X	X	1	I	\dagger	+	3		+	-	40	(1)
7-8	6139 0-2					H		\prod		H	H	\prod		-	H	HO	2
32	1				\dagger	+	+	1		\dagger	+	-			H	97	9
N. C.	1			>	1	1	 	+		\dagger	+	+	1	+	+	101	
36	7-0 051dI			<	X	1	4	\downarrow		\dagger	+	+		+	+	725	2
Relinquished	Relinquished by (company):	+		Receiv	ed by (Received by (company):	Ä	-	250			Samo	les Rec	ived: Co.	ol or Am	Samples Received: Cool or Ambient Crircle one)	1
Print Name:	rate N	2000		Print Name:	ame:			7	813			Temp	erature	Temperature Recieved at:	1at:	(if applicable)	able)
Date & Time:	120000	111		Date &	Date & Time:			74	4/14	1 12	00.		ported b	W: Hand	l deliver	Transported by: Hand delivered / courier	
Signature:	Mus Dady			Signature:	nre:				7	\						Page No:	
									-				The same of the sa	The second name of the last			

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

											*										Coucil	2 22 1					
Frinkelsh	LIIVI OIAU	is wood, NSW, 2067		0	1	labservices.com.au		Comments	Provide as much information about the sample as you can	7 101/	7707		0 107					HOLD		Noi N	7. 33.	7017			Ambient (circle one)	(ii applicable)	Wered / couner
v		Envirolab Services 12 Ashley St, Chatswood, NSW, 2067		Phone: 02 9910 6200	Fax: 02 9910 6201	E-mail: ahie@envirolabservices.com.au	Contact: Aileen Hie																	Campler Bossined	Temperature Decision 24:	Transported hy: Unad doll	manaported by: namu denvered / couner
CHAIN OF CUSTODY - Client	ENVIROLAB SERVICES	Ct Name and Number:		rvices Quote No. :	required:	Or cnooses' standard// 1 day / 2 day / 3 day Note: Inform lab in advance if urgent tumaround is required -		Tests Required																company): EUS	(SB	17	
CHAIN OF CL	ENVIROL	Client Proje	PO No.:	Such 146 50 4 lebe Referrirelab Services Quote No.:	Date results required:	Or chooses standard/ 1 day / 2 day / 3 day / 3. Over: Inform lab in advance if urgent tumeround is required.	surcharge applie		Type of sample SHAD		X	X		×	X	X	×	>	×			X	X	Received by	Print Name:	Date & Time:	Signature:
		CSHQ Greenfield	Moods	-			DCJ LT Fax:	Sample information	Client Sample ID Sampled	h-0 01	101 Surface	_].	J	4	2	02 0.	1	02 Cuchen		21.0 50	05 0-2	of sucface	10 to	ipany):	ate woods	41/4/70 Wa	(what)
		Client: EM	Sampler: Ka	\$	Email: Karlenhold				Envirolab Sample ID Clie	71d1 9th	97 HB	0/HH X6	018H	S 1810	1 HB	7	\$3.77 0:00 1:00 1:00 1:00 1:00 1:00 1:00 1:	44 V8	86 HA103	ST TAI	7		8 HB) py	4	Date & Time: / /	Signature:

		CHAIN	OF C	OF CUSTODY - Client	ı¥ - Cl	ient		*	Г
	-	EN	NVIRO	VIROLAB SERVICES	ICES			CINVICOIAO	
Client: ENVIRON Project Mgr: Kirshy Green	Mield		Client Proj	Client Project Name and Number:	₩.		Envirolab Services	Ses Swood New 2067	T
4			-					ANGOL, NOW, LOO	-
Address: Level 2 Suite 198		Souleberg		Envirolab Services Quote No. :	0.:		Phone: 02 9910 6200	00	
Email: Karlentold (a) pr	MANN	Commence of the contraction		Date results required:			Fax: 02 9910 6201	01	
(0) Wall				or chooses' standard/ 1 day / 2 day / 3 day Vote: Inform lab in advance if urgent turnaround is required -	y / 2 day / 3 d nt tumaround is re	lay couired -	E-mail: ahie@envir	E-mail: ahie@envirolabservices.com.au	
THORE (U.) TIOLOTET FA	Fax:		surcharge applies	lies			Contact: Aileen Hie		
Sample information	ation					Tests Required		Comments	Γ
Envirolab Glient Sample ID s	Date	Type of sample	Shable SHAG SHAG					Provide as much information about the sample as you can	υ
SI-O-HOIAIT 1P	1		7		#	+			7
1			1		+			2701	7
V			×	+	+			HOLD	Т
A HATIOS			X						Т
STO SOLUTION OF IS								HOLN	Т
1000			X						Т
98 74 00 SA440			×		1			HOLD	П
1—1			36		+		+		Т
100 JA 106 0.2								HOLD	Т
2 MA!			X	#	+			HOLD	П
101								HOLY	1
100 00 01 01 00 00 00 00 00 00 00 00 00								HOLD	Ī
ompany):			1						П
Print Name: Kate 1000	مرد		Received by	Received by (company):	46	1	Samples Received: Cool or Ambient (circle one)	or Ambient (circle one)	
12000 121	4/14		Date & Time		4/2	5 10 00	Temperature Recieved at:	: (if applicable)	
Signature: Win bods			Signature:			1 14 16:00	Transported by: Hand delivered / courier	elivered / courier	
					K			Page No:	

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

CHAIN	N OF CUSTODY - Client	
	ENVIROLAB SERVICES	CIIVITOIAD
g: Kirshu	Client Project Name and Number: AS 130 38 3	Envirolab Services
te Moods	THE OWNER OF THE OWNER OWNE	1007 /1001 /1001 /100 /1001 /1001 /1001 /1001 /1001 /1001 /1001 /1001 /1001 /1001 /1001 /1001 /1001 /1001 /1001
ve(2)	Envirolab Services Quote No. :	Phone: 02 9910 6200
Frail: Large of Colors Colors	Name and Address of the Owner, where	Fax: 02 9910 6201
בלו ביונונים	_	E-mail: ahie@envirolabservices.com.au
Phone: (02) (9625 444 Fax:	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	Contact: Aileen Hie
Sample information	Tests Required	Commente
Envirolab Glient Sample ID Date Type of sample Sample ID	JHHO Apuonij Algnio	Provide as much information about the sample as you can
10% HA108 0.3-0.4		
107 HA109 0-0.1	×	TOCD
109 0	X	
0	×	
0	X	
1.0-0-1	×	
112 WH 34	X	
12 0-	××	
12 0		
7	××	
HHIIS O	×	
HIIG O	× ×	
1417	>	HOLD
ompany):		
Print Name: Kate Woods	Received by (company):	Samples Received: Cool or Ambient (circle one)
021	11/	Temperature Recieved at: (if applicable)
Signature: Kin (DOS)		Iransported by: Hand delivered / courier
		Page No:

			CHAIN	OF C	OF CUSTODY - Client)Y-C	lient	1.			Finished	
				VVIROL	ENVIROLAB SERVICES	ICES					CONTROL OF THE PROPERTY OF THE	
Client: Project Mgr:	KIRSHY GIRES	nsipolo		Client Proje	Client Project Name and Number: AS 130 383	Sper:			Envirolab Services 12 Ashley St. Chatswood. NSW. 2067	ervices	d. NSW. 2067	T
Sampler:	م م	- 6										- diameter
Address: Lev	ie (2/5	7 B S	sath 14B, SOGIEBER		Envirolab Services Quote No.:	0.:			Phone: 02 9910 6200	10 6200		
Email: Ka	kareentold a p	ONNO	(a) PANTON CON CON	Date results required:	required:				Fax: 02 99	02 9910 6201	,	
	2544	Fax:		Note: Inform lab is surcharge applies	or choose; standardy/ 1 day / 2 day / 3 day Note: Inform lab in 36Vance if urgent tumaround is required - surcharge applies	ny / 2 day / 3 nt tumaround is	day required -		E-mail: ahie@envir Contact: Aileen Hie	øenvirolab: en Hie	E-mail: ahie@envirolabservices.com.au Contact: Aileen Hie	
	Sample information	nation					Tests Required	uired			Commante	T
Envirolab Sample ID	Client Sample ID	Date	Type of sample	5,144d							Provide as much information about the sample as you can	
121	HAIIS 0.2-0-3			,		+	_	+			/.	Т
122	HA1160-0-1			×						+	HOLD	T
123	9									_	HOI IS	T
120	10116 0-5-0-Y			,							HOLIS	T
35	10117 0 27 63			X			+	+		1		П
427	0					+		+			HOLIS	T
200	110-0 611H			×				-		+	Horn	T
100	WHUA COLL			×			10					T
3 -				×> ××			+					П
132	1A120 0-3-0-4			<		+	+	1	+	+	1000	Т
23	1.0-01			X			$\frac{1}{1}$				מסכו	Ī
200	1412 0-6-0-1			> ×		+	+				HOLD	П
Relinquished	<u>۽</u> ا			Received by (company)	Commercial		015					Т
Print Name:	S	Spoo		Print Name:	(Allibality):		200		Samples Received: Cool or Ambient (circle one)	d: Cool or Amb	bient (circle one)	
Date & Time:	120m 12/	4116		Date & Time:		117	7/14	12.00	Transported has been del	leved at:	(if applicable)	
Signature:	Mus (book)			Signature:		10	J 1		mansported by: nand delivered / counter	aladian ngpu	d / couner	
						M					rage No:	7

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1,

			CHAIN	OF	3	STO	DY	OF CUSTODY - Client	ent						Heloyim
			Ш	NVIR	OLA	3 SER	ENVIROLAB SERVICES	S						J	IIVII UIDU
Client: E	NVIKON KIRSH Gree	ntiplo		Client	S (3	o SS	Client Project Name and Number: AS 130 383				Envii 12 As	Envirolab Services 12 Ashley St. Chatswo	hatswood	Envirolab Services 12 Ashley St, Chatswood, NSW, 2067	290
Sampler: K	4	- !		PO No.:							I -				
Address: Leve	7/3	7B, Sc	suff lab SOGlebera		ab Servi	Envirolab Services Quote No.:	e No. :				Phone	Phone: 02 9910 6200	0 6200		
Ine J	lunchon	.			Date results required:	mired:					Fax:	02 991	02 9910 6201		
Email: Kar	\sim	NANO	CHARONCOP.CON)se: sta	ndard/ 1	day / 20	Or choose standard / 1 day / 2 day / 3 day			E-mai	l: ahie@	envirolal	E-mail: ahie@envirolabservices.com.au	om.au
Phone: (02)	02) 19625444	Fax:		Note: Inform lab II surcharge applies	orm lab ın e applies	advance if	urgent turna	Note: Inform lab i n adva nce if urgent turnaround is required - surcharge applies	ired -		Conta	Contact: Aileen Hie	η Hie		
	Sample information	nation						Te	Tests Required	red				0	Comments
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	2 bolson	Ho	SHE	DIPIJON DIPIJOS SHE							Prov	Provide as much information about the
-+	- 1			us	11	10	H							dippe	sample as you can
7 95 7	MAY 22 03-04	اد		>		X	X							L	
(St D	M					×	×					-	L	-	
4							×								
	20				+	+	X								
Op.	250			1	+	+	X	+		+					
- 0	ロロンという			1	+	+	× X	+		+		-			
+	75,5			1	+	+	X	+	#	+		+			
144 14	19124 0.2				\dagger	+	1	+		+	#	+	\pm	HOL	
7 551	4A 125 Surface						X				T	-	ŀ	1	
200	25				+	4	X			H					
1000	ななっつい			1	+	+	X	+		-					
2000	100000			1	+	+	1	+	1	+	1	-		HOLI	\wedge
6	P104 13-0-9			1	+	+	#	+	1	+	#		1	Hot	
Relinquished by (company):	(company):			Sign	d buy (g)			1	8/		1	1	1	コロロ	
Print Name:		2000		Drint Mamo	20 AG P	Drint Margin		D	2 2		Sample	Received	Cool or An	Samples Received: Cool or Ambient (circle one)	one)
Date & Time:	2000 021	41/6		Date & Time:	rime:			11/2	1 111	12.0C	Temper	Temperature Recieved at:	ved at:	(if applicable)	icable)
Signature:	Mus books .			Signature	ë			1 3			ranspo	rted by: n	and delive	ransported by: Hand delivered / courier	
					Name and Address of the Owner, where			1		The state of the s				Page No:	

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1,

CH	CHAIN OF CUSTODY - Client	
Client: FA/(// 100A)	ENVIROLAB SERVICES	Envirolab
34	Client Project Name and Number: AS 130 383 Po No.:	Envirolab Services 12 Ashley St, Chatswood, NSW, 2067
Address: Level 2 Surte 198, 50 Gleberal		Phone: 02 9910 6200
Ment	Date results required: Or choose: standard) 1 day / 2 day / 3 day Note: Inform lab in advance if urgent tumaround is required - surcharge applies	Fax: 02 9910 6201 E-mail: ahie@envirolabservices.com.au
Sample information	Tests Remined	Contact: Aileen Hie
Envirolab Client Sample ID Date Type of	Type of sample AST S HOT ABOUT ABO	Provide as much information about the sample as you can
15/ TPIII - 0.5	,	
SET F 16 - 0.5 - 0.1	X X X	CITOH
Relinquished by (company): Print Name: Kar Ho	Received by (company):	
ë	1813	samples Received: Cool or Ambient (circle one) Temperature Recieved at: (if applicable)
Signature: Kin (Arch)	7 11114	Transported by: Hand delivered / courier
		Page No:

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1,

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 112590

Client:

NSW 2291

Environ (Newcastle) Suite 19B, Level 2 50 Glebe Rd The Junction

Attention: Kate Woods, Kirsty Greenfield

Sample log in details:

Your Reference: AS 130383
No. of samples: 152 Soils

Date samples received / completed instructions received 4/7/2014 / 4/7/2014

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 11/07/14 / 11/07/14

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Laboratory Manager

vTRH(C6-C10)/BTEXNin Soil						
Our Reference:	UNITS	112590-1	112590-4	112590-7	112590-11	112590-13
Your Reference		TP101	TP104	TP107	TP111	TP113
Depth		-	0-0.2	-	0-0.3	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	86	100	100	96	98

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	112590-15	112590-16	112590-17	112590-18	112590-19
Your Reference		TP115	TP116	TP117	QA1	TP118
Depth		-	0.1-0.3	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	106	88	108	100	91

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	112590-20	112590-21	112590-23	112590-24	112590-25
Your Reference		TP119	TP120	TP122	TP123	TP124
Depth		-	-	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	96	96	97	96	95

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	112590-26	112590-27	112590-28	112590-30	112590-31
Your Reference		TP125	TP126	TP127	TP128	TP128
Depth		-	-	-	0.1	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	97	94	94	97	96

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	112590-33	112590-35	112590-36	112590-37	112590-38
Your Reference		TP129	QA1a	TP130	TP130	TP131
Depth		0-0.3	-	0-0.3	0.6-0.7	0.1-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	94	94	99	95	98

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	112590-41	112590-43	112590-46	112590-49	112590-52
Your Reference		TP132	TP132	TP133	TP134	TP135
Depth		0.1	0.4	0.1-0.2	0.2	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	96	96	100	97	96

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	112590-55	112590-56	112590-59	112590-61	112590-63
Your Reference		TP135	TP136	QA2a	TP137	TP137
Depth		0.4	0.1	-	0.1	0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	92	92	90	94	93

vTRH(C6-C10)/BTEXN in Soil					
Our Reference:	UNITS	112590-66	112590-70	112590-74	112590-152
Your Reference		TP138	TP139	TP140	TP116
Depth		0.2	0.1	0.1	0.5-0.7
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	95	93	92	91

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	112590-1	112590-4	112590-7	112590-11	112590-13
Your Reference		TP101	TP104	TP107	TP111	TP113
Depth Type of sample		- Soil	0-0.2 Soil	- Soil	0-0.3 Soil	- Soil
Date extracted	_	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	_	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
		<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg					
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	96	96	96	96	96
			· I		· I	
svTRH (C10-C40) in Soil						
Our Reference: Your Reference	UNITS	112590-15 TP115	112590-16 TP116	112590-17 TP117	112590-18	112590-19 TP118
Depth		19115	0.1-0.3	19117	QA1	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	_	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	_	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
	ma/ka	<50	<50	<50	<50	<50
TRHC10 - C14	mg/kg	<100	<100		<100	<100
TRHC 15 - C28	mg/kg			3,200		
TRHC29 - C36	mg/kg	<100	<100	2,200	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	5,100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	1,000	<100	<100
Surrogate o-Terphenyl	%	92	92	107	97	92
	1					
svTRH (C10-C40) in Soil	LINITO	440500 00	440500 04	440500 00	440500 04	440500 05
Our Reference: Your Reference	UNITS	112590-20 TP119	112590-21 TP120	112590-23 TP122	112590-24 TP123	112590-25 TP124
Pour Reference Depth		17119	1 -	-	117123	17124
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	_	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	_	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	120	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	61	<50
		<50 <50	<50 <50	<50 <50	61	<50 <50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg			<:00		
TRH>C16-C34	mg/kg	<100	<100	<100	150	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	95	96	93	96	88

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	112590-26	112590-27	112590-28	112590-30	112590-31
Your Reference		TP125	TP126	TP127	TP128	TP128
Depth Type of sample		- Soil	- Soil	- Soil	0.1 Soil	0.2 Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	_	07/07/2014	07/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
		<50 <50	<50 <50	<50	<50	<50 <50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	92	95	91	89	95
TDII/O40 040\\ 0 \\	1					
svTRH (C10-C40) in Soil Our Reference:	UNITS	112590-33	112590-35	112590-36	112590-37	112590-38
Your Reference	ONITS	TP129	QA1a	TP130	TP130	TP131
Depth		0-0.3	-	0-0.3	0.6-0.7	0.1-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	_	08/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene	mg/kg	<50	<50	<50	<50	<50
(F2)						
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	93	111	92	94	92
TBU/040 040); 0 'I	1	1	1	I	Ι	
svTRH (C10-C40) in Soil Our Reference:	UNITS	112590-41	112590-43	112590-46	112590-49	112590-52
Your Reference		TP132	TP132	TP133	TP134	TP135
Depth		0.1	0.4	0.1-0.2	0.2	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	_	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene	mg/kg	<50	<50	<50	<50	<50
(F2)	3 9					
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	120	<100	<100
Surrogate o-Terphenyl	%	90	92	93	93	91

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	112590-55	112590-56	112590-59	112590-61	112590-63
Your Reference		TP135	TP136	QA2a	TP137	TP137
Depth		0.4	0.1	-	0.1	0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	540	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	590	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	93	97	109	#	92

svTRH (C10-C40) in Soil					
Our Reference:	UNITS	112590-66	112590-70	112590-74	112590-152
Your Reference		TP138	TP139	TP140	TP116
Depth		0.2	0.1	0.1	0.5-0.7
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	08/07/2014
TRHC10 - C14	mg/kg	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100
Surrogate o-Terphenyl	%	92	96	92	91

PAHs in Soil						
Our Reference:	UNITS	112590-1	112590-4	112590-7	112590-11	112590-13
Your Reference		TP101	TP104	TP107	TP111	TP113
Depth		-	0-0.2	-	0-0.3	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.07	0.12	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	0.35	0.69	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	101	102	102	104	103

PAHs in Soil						
Our Reference:	UNITS	112590-15	112590-16	112590-17	112590-18	112590-19
Your Reference		TP115	TP116	TP117	QA1	TP118
Depth		-	0.1-0.3	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Naphthalene	mg/kg	<0.1	<0.1	1.6	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	7.6	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	2.5	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	130	<0.1	0.2
Anthracene	mg/kg	<0.1	<0.1	33	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	390	<0.1	0.5
Pyrene	mg/kg	<0.1	<0.1	380	<0.1	0.4
Benzo(a)anthracene	mg/kg	<0.1	<0.1	180	<0.1	0.2
Chrysene	mg/kg	<0.1	<0.1	170	<0.1	0.2
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	320	<0.2	0.4
Benzo(a)pyrene	mg/kg	<0.05	<0.05	220	<0.05	0.23
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	120	<0.1	0.2
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	26	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	120	<0.1	0.2
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	<0.5	310	<0.5	<0.5
Total+ve PAH's	mg/kg	NIL(+)VE	NIL(+)VE	2,100	NIL(+)VE	2.5
Surrogate p-Terphenyl-d14	%	96	98	110	110	100

PAHs in Soil						
Our Reference:	UNITS	112590-20	112590-21	112590-23	112590-24	112590-25
Your Reference		TP119	TP120	TP122	TP123	TP124
Depth		-	-	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	0.1	0.2	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.5	0.2	0.5	0.7	0.1
Pyrene	mg/kg	0.5	0.2	0.5	0.7	<0.1
Benzo(a)anthracene	mg/kg	0.4	0.1	0.3	0.4	<0.1
Chrysene	mg/kg	0.4	0.1	0.4	0.4	<0.1
Benzo(b+k)fluoranthene	mg/kg	1.2	0.2	0.8	1	<0.2
Benzo(a)pyrene	mg/kg	0.58	0.13	0.47	0.56	0.06
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	0.1	0.4	0.5	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.4	0.1	0.4	0.4	<0.1
Benzo(a)pyreneTEQNEPMB1	mg/kg	1.0	<0.5	1.0	1.0	<0.5
Total+ve PAH's	mg/kg	4.8	1.0	4.0	4.8	0.18
Surrogate p-Terphenyl-d14	%	102	104	100	99	96

PAHs in Soil						
Our Reference:	UNITS	112590-26	112590-27	112590-28	112590-30	112590-31
Your Reference		TP125	TP126	TP127	TP128	TP128
Depth		-	-	-	0.1	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	7/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1	0.2	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.4	0.4	0.6	<0.1	<0.1
Pyrene	mg/kg	0.4	0.4	0.5	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.3	0.2	0.2	<0.1	<0.1
Chrysene	mg/kg	0.3	0.2	0.2	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	0.8	0.4	0.3	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.41	0.21	0.17	0.08	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.4	0.2	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.3	0.1	0.1	<0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	1.0	<0.5	<0.5	<0.5	<0.5
Total+ve PAH's	mg/kg	3.5	2.3	2.2	0.080	NIL(+)VE
Surrogate p-Terphenyl-d14	%	100	103	99	97	104

PAHs in Soil						
Our Reference:	UNITS	112590-33	112590-35	112590-36	112590-37	112590-38
Your Reference		TP129	QA1a	TP130	TP130	TP131
Depth		0-0.3	-	0-0.3	0.6-0.7	0.1-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.4	0.2	0.3	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	1	0.5	1.0	<0.1	0.2
Pyrene	mg/kg	0.9	0.4	1	<0.1	0.1
Benzo(a)anthracene	mg/kg	0.5	0.2	0.4	<0.1	<0.1
Chrysene	mg/kg	0.5	0.2	0.6	<0.1	0.1
Benzo(b+k)fluoranthene	mg/kg	1.1	0.5	1.0	<0.2	0.2
Benzo(a)pyrene	mg/kg	0.64	0.23	0.56	<0.05	0.11
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	0.2	0.4	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.5	0.2	0.4	<0.1	<0.1
Benzo(a)pyreneTEQNEPMB1	mg/kg	1.0	<0.5	1.0	<0.5	<0.5
Total +ve PAH's	mg/kg	6.2	2.6	5.7	NIL(+)VE	0.76
Surrogate p-Terphenyl-d14	%	100	97	100	100	99

PAHs in Soil						
Our Reference:	UNITS	112590-41	112590-43	112590-46	112590-49	112590-52
Your Reference		TP132	TP132	TP133	TP134	TP135
Depth		0.1	0.4	0.1-0.2	0.2	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	0.3	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.06	<0.05	0.11	<0.05	0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)pyreneTEQNEPMB1	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	0.060	0.13	0.84	NIL(+)VE	0.05
Surrogate p-Terphenyl-d14	%	97	101	101	101	99

PAHs in Soil						
Our Reference:	UNITS	112590-55	112590-56	112590-59	112590-61	112590-63
Your Reference		TP135	TP136	QA2a	TP137	TP137
Depth		0.4	0.1	-	0.1	0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.08	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)pyreneTEQNEPMB1	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total+ve PAH's	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	0.18	NIL(+)VE
Surrogate p-Terphenyl-d14	%	104	107	120	111	101

PAHs in Soil						
Our Reference:	UNITS	112590-66	112590-70	112590-74	112590-98	112590-102
Your Reference		TP138	TP139	TP140	HA106	HA107
Depth		0.2	0.1	0.1	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	0.4	<0.1	<0.1	1.0
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.6
Acenaphthene	mg/kg	<0.1	0.6	<0.1	0.6	4.3
Fluorene	mg/kg	<0.1	0.6	<0.1	0.3	2.6
Phenanthrene	mg/kg	<0.1	2.3	<0.1	5.5	24
Anthracene	mg/kg	<0.1	0.3	<0.1	1.2	5.7
Fluoranthene	mg/kg	<0.1	3.8	<0.1	19	76
Pyrene	mg/kg	<0.1	3.4	<0.1	19	72
Benzo(a)anthracene	mg/kg	<0.1	2.4	<0.1	18	70
Chrysene	mg/kg	<0.1	2.7	<0.1	19	70
Benzo(b+k)fluoranthene	mg/kg	<0.2	5.6	<0.2	46	170
Benzo(a)pyrene	mg/kg	<0.05	2.9	<0.05	25	98
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	2.1	<0.1	19	63
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.3	<0.1	2.7	15
Benzo(g,h,i)perylene	mg/kg	<0.1	1.9	<0.1	18	59
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	4.0	<0.5	36	140
Total+ve PAH's	mg/kg	NIL(+)VE	29	NIL(+)VE	190	730
Surrogate p-Terphenyl-d14	%	101	116	105	105	103

PAHs in Soil						
Our Reference:	UNITS	112590-105	112590-107	112590-108	112590-109	112590-110
Your Reference		HA108	HA109	HA109	HA110	HA110
Depth		0-0.1	0-0.1	0.3-0.4	0-0.1	0.3-0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.4	0.4	0.2	1.5	0.1
Fluorene	mg/kg	0.2	0.2	<0.1	1.0	<0.1
Phenanthrene	mg/kg	3.5	3.4	1.5	15	1.8
Anthracene	mg/kg	0.8	0.9	0.4	3.8	0.5
Fluoranthene	mg/kg	12	11	4.5	43	7.8
Pyrene	mg/kg	12	10	4.5	40	7.8
Benzo(a)anthracene	mg/kg	9.0	10	2.6	40	5.5
Chrysene	mg/kg	9.3	10	2.5	41	5.5
Benzo(b+k)fluoranthene	mg/kg	22	25	5.6	96	13
Benzo(a)pyrene	mg/kg	13	14	3.7	55	8.1
Indeno(1,2,3-c,d)pyrene	mg/kg	9.1	10	2.4	41	5.8
Dibenzo(a,h)anthracene	mg/kg	0.9	1.7	0.3	9.4	0.7
Benzo(g,h,i)perylene	mg/kg	8.9	9.7	2.3	37	5.5
Benzo(a)pyreneTEQNEPMB1	mg/kg	18	21	5.0	82	11
Total +ve PAH's	mg/kg	100	110	30	420	63
Surrogate p-Terphenyl-d14	%	100	108	102	105	101

PAHs in Soil						
Our Reference:	UNITS	112590-111	112590-112	112590-113	112590-114	112590-116
Your Reference		HA111	QA3a	HA111	HA112	HA113
Depth		0-0.1	-	0.3-0.4	0-0.1	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	1.2	0.2	1.1	0.2	<0.1
Fluorene	mg/kg	0.8	0.1	0.4	0.1	<0.1
Phenanthrene	mg/kg	12	3.1	12	2.4	2.7
Anthracene	mg/kg	3.1	0.8	3.7	0.6	0.7
Fluoranthene	mg/kg	37	14	46	9.3	15
Pyrene	mg/kg	35	14	46	9.0	14
Benzo(a)anthracene	mg/kg	36	8.3	34	9.3	9.5
Chrysene	mg/kg	37	8.2	34	9.8	12
Benzo(b+k)fluoranthene	mg/kg	86	20	76	25	28
Benzo(a)pyrene	mg/kg	50	13	47	14	8.6
Indeno(1,2,3-c,d)pyrene	mg/kg	38	10	36	10	7.4
Dibenzo(a,h)anthracene	mg/kg	8.4	1.0	4.4	1.4	1.4
Benzo(g,h,i)perylene	mg/kg	33	9.4	32	9.2	7.5
Benzo(a)pyrene TEQ NEPM B1	mg/kg	75	18	67	20	15
Total+ve PAH's	mg/kg	380	100	370	100	110
Surrogate p-Terphenyl-d14	%	99	106	100	101	102

PAHs in Soil						
Our Reference:	UNITS	112590-117	112590-118	112590-120	112590-122	112590-125
Your Reference		HA113	HA114	HA115	HA116	HA117
Depth		0.3-0.4	0-0.1	0-0.1	0-0.1	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.9	0.4	16	4.2	4.0
Anthracene	mg/kg	0.3	<0.1	3.5	0.8	1.3
Fluoranthene	mg/kg	3.2	3.1	210	41	38
Pyrene	mg/kg	3.1	3.0	240	41	38
Benzo(a)anthracene	mg/kg	1.5	4.4	300	57	52
Chrysene	mg/kg	1.6	8.1	490	110	110
Benzo(b+k)fluoranthene	mg/kg	3.6	18	990	240	300
Benzo(a)pyrene	mg/kg	1.9	3.7	230	42	47
Indeno(1,2,3-c,d)pyrene	mg/kg	1.3	3.1	190	48	76
Dibenzo(a,h)anthracene	mg/kg	0.2	0.8	60	12	25
Benzo(g,h,i)perylene	mg/kg	1.2	3.3	190	53	81
Benzo(a)pyreneTEQNEPMB1	mg/kg	3.0	7.0	440	90	120
Total+ve PAH's	mg/kg	19	47	2,900	640	770
Surrogate p-Terphenyl-d14	%	98	99	120	120	104

PAHs in Soil						
Our Reference:	UNITS	112590-128	112590-129	112590-130	112590-131	112590-133
Your Reference		HA119	QA4a	HA119	HA120	HA121
Depth		0-0.1	-	0.3-0.4	0-0.1	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.9	<0.1	0.1	<0.1	<0.1
Fluorene	mg/kg	0.5	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	5.6	0.9	1.5	1.4	0.1
Anthracene	mg/kg	1.0	0.2	0.4	0.4	<0.1
Fluoranthene	mg/kg	17	3.4	5.8	12	1.2
Pyrene	mg/kg	16	3.4	5.6	11	1.2
Benzo(a)anthracene	mg/kg	16	2.3	3.2	14	1.5
Chrysene	mg/kg	21	2.9	3.3	26	2.8
Benzo(b+k)fluoranthene	mg/kg	53	7.0	7.4	69	7.4
Benzo(a)pyrene	mg/kg	19	2.8	4.3	12	1.4
Indeno(1,2,3-c,d)pyrene	mg/kg	17	2.4	3.1	20	2.2
Dibenzo(a,h)anthracene	mg/kg	3.0	0.3	0.3	4.9	0.5
Benzo(g,h,i)perylene	mg/kg	16	2.3	2.9	21	2.4
Benzo(a)pyrene TEQ NEPM B1	mg/kg	31	4.0	6.0	28	3.0
Total+ve PAH's	mg/kg	190	28	38	190	21
Surrogate p-Terphenyl-d14	%	102	102	102	102	102

PAHs in Soil					
Our Reference:	UNITS	112590-135	112590-136	112590-137	112590-152
Your Reference		HA122	HA122	QA5a	TP116
Depth		0-0.1	0.3-0.4	-	0.5-0.7
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	=	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.4	0.7	0.9	<0.1
Anthracene	mg/kg	<0.1	0.2	0.2	<0.1
Fluoranthene	mg/kg	2.4	2.6	3.5	<0.1
Pyrene	mg/kg	2.3	2.5	3.4	<0.1
Benzo(a)anthracene	mg/kg	2.4	1.4	2.0	<0.1
Chrysene	mg/kg	4.2	1.7	2.4	<0.1
Benzo(b+k)fluoranthene	mg/kg	8.8	3.8	5.3	<0.2
Benzo(a)pyrene	mg/kg	2.2	1.7	2.6	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	2.1	1.2	1.8	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.4	0.2	0.2	<0.1
Benzo(g,h,i)perylene	mg/kg	2.1	1.3	1.8	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	4.0	3.0	4.0	<0.5
Total +ve PAH's	mg/kg	27	17	24	NIL(+)VE
Surrogate p-Terphenyl-d14	%	95	77	103	100

Acid Extractable metals in soil						
Our Reference:	UNITS	112590-1	112590-4	112590-7	112590-11	112590-13
Your Reference		TP101	TP104	TP107	TP111	TP113
Depth		-	0-0.2	-	0-0.3	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	12	<1	23	17
Copper	mg/kg	2	2	<1	2	<1
Lead	mg/kg	5	10	1	12	24
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	8	5	1	6	3
Zinc	mg/kg	32	36	3	35	5
Acid Extractable metals in soil						
Our Reference:	UNITS	112590-15	112590-16	112590-17	112590-18	112590-19
Your Reference		TP115	TP116	TP117	QA1	TP118
Depth		-	0.1-0.3	-	-	- O-11
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	<4	63	<4	<4	<4
Cadmium	mg/kg	<0.4	0.5	<0.4	<0.4	<0.4
Chromium	mg/kg	11	12	11	12	5
Copper	mg/kg	<1	590	17	<1	4
Lead	mg/kg	4	1,600	23	5	7
Mercury	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Nickel	mg/kg	1	5	18	1	6
Zinc	mg/kg	2	5,600	51	2	41
Acid Extractable metals in soil						
Our Reference:	UNITS	112590-20	112590-21	112590-23	112590-24	112590-25
Your Reference		TP119	TP120	TP122	TP123	TP124
Depth Type of comple		- Soil	- Soil	- Soil	- Soil	- Soil
Type of sample				Soil		
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
	1	3	3	5	7	7
Chromium	mg/kg					
	mg/kg mg/kg	3	2	1	2	3
Chromium			2 18	1 6	2 9	3 7
Chromium Copper	mg/kg	3				

Envirolab Reference: 112590 Revision No: R 00

Zinc

mg/kg

20

22

14

26

12

Acid Extractable metals in soil						
Our Reference:	UNITS	112590-26	112590-27	112590-28	112590-30	112590-31
Your Reference	UNITS	TP125	TP126	TP127	TP128	TP128
Depth		- 11 125	-	-	0.1	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	_	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	<4	<4	<4	30	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	7	5	6	17	8
Copper	mg/kg	2	5	3	94	12
Lead	mg/kg	8	6	6	120	8
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	4	4	18	14
Zinc		57	23	13	510	48
ZINC	mg/kg	57	23	13	510	48
Acid Extractable metals in soil						
Our Reference:	UNITS	112590-33	112590-35	112590-36	112590-37	112590-38
Your Reference		TP129	QA1a	TP130	TP130	TP131
Depth		0-0.3	-	0-0.3	0.6-0.7	0.1-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	6	20	<4	<4	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	4.3
Chromium	mg/kg	15	15	9	29	29
Copper	mg/kg	8	11	12	1	48
Lead	mg/kg	9	9	11	8	23
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	47	65	54	8	130
Zinc	mg/kg	47	50	86	15	240
·	1 3 3				-	
Acid Extractable metals in soil						
Our Reference:	UNITS	112590-41	112590-43	112590-46	112590-49	112590-52
Your Reference		TP132	TP132	TP133	TP134	TP135
Depth		0.1	0.4	0.1-0.2	0.2	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	20	<4	8	7	9
Cadmium	mg/kg	<0.4	<0.4	<0.4	0.4	0.6
Chromium	mg/kg	33	15	11	10	19
Copper	mg/kg	44	2	22	28	140
Lead	mg/kg	13	10	21	47	38
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	27	3	16	21	17
	1 .		_			

130

8

mg/kg

140

220

Envirolab Reference: 112590 Revision No: R 00

Zinc

210

Acid Extractable metals in soil Our Reference:	UNITS	112590-55	112590-56	112590-59	112590-61	112590-63
Your Reference		TP135	TP136	QA2a	TP137	TP137
Depth		0.4	0.1	-	0.1	0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	6	6	10	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	6	8	20	18
Copper	mg/kg	12	10	13	24	<1
Lead	mg/kg	16	7	8	29	17
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	10	13	12	4
Zinc	mg/kg	47	42	41	76	22

Acid Extractable metals in soil						
Our Reference:	UNITS	112590-66	112590-70	112590-74	112590-152	112590-153
Your Reference		TP138	TP139	TP140	TP116	TP135-
						TRIPLICATE
Depth		0.2	0.1	0.1	0.5-0.7	0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	<4	4	<4	100	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	0.5	<0.4
Chromium	mg/kg	7	17	7	20	13
Copper	mg/kg	<1	26	1	580	12
Lead	mg/kg	8	33	13	1,800	23
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	15	5	6	7
Zinc	mg/kg	41	280	7	6,000	81

	1	1	<u> </u>		<u> </u>	
Miscellaneous Inorg - soil	LINITO	440500 4	440500 4	440500 7	440500 44	440500 40
Our Reference:	UNITS	112590-1	112590-4	112590-7	112590-11	112590-13
Your Reference		TP101	TP104	TP107	TP111	TP113
Depth Time of commis		- Ceil	0-0.2	- Ceil	0-0.3	- Cail
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	45	16	19	22	<0.5
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-15	112590-16	112590-17	112590-18	112590-19
Your Reference		TP115	TP116	TP117	QA1	TP118
Depth		-	0.1-0.3	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	2.1	31	340	1.6	22
		1				
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-20	112590-21	112590-23	112590-24	112590-25
Your Reference		TP119	TP120	TP122	TP123	TP124
Depth		-	-	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	28	17	26	23	17
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-26	112590-27	112590-28	112590-30	112590-31
Your Reference		TP125	TP126	TP127	TP128	TP128
Depth		-	-	-	0.1	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	27	15	19	220	800
Miscellaneous Inorg - soil			_		_	
Our Reference:	UNITS	112590-33	112590-35	112590-36	112590-37	112590-38
Your Reference		TP129	QA1a	TP130	TP130	TP131
Depth		0-0.3	-	0-0.3	0.6-0.7	0.1-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	200	1,098	1,463	120	87
· · · · · · · · · · · · · · · · · · ·	E. E.		1,,,,,,	1,,.55	1	<u>.</u>

Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-41	112590-43	112590-46	112590-49	112590-52
Your Reference		TP132	TP132	TP133	TP134	TP135
Depth		0.1	0.4	0.1-0.2	0.2	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	58	0.9	1.1	110	110
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-55	112590-56	112590-59	112590-61	112590-63
Your Reference		TP135	TP136	QA2a	TP137	TP137
Depth		0.4	0.1	- QAZA	0.1	0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date prepared Date analysed	_	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
•	-					
Fluoride (1:5 soil:water)	mg/kg	4.6	13	6.0	2.2	7.0
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-66	112590-70	112590-74	112590-77	112590-78
Your Reference		TP138	TP139	TP140	HA101	HA101
Depth		0.2	0.1	0.1	Surface	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	5.5	79	50	28	180
			1	I		I
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-80	112590-81	112590-82	112590-83	112590-85
Your Reference		HA101	HA102	HA102	HA102	HA103
Depth		0.2	Surface	0.1	0.15	Surface
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	62	53	78	120	140
Miscellaneous Inorg - soil		440500 00	440500 00	440500 00	440500 00	440500 0 :
Our Reference:	UNITS	112590-86	112590-89	112590-90	112590-93	112590-94
Your Reference		HA103	HA104	HA104	HA105	HA105
Depth Time of a small		0.1	Surface	0.1	Surface	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	180	90	82	100	120

Micros Honoro II II		T			T	
Miscellaneous Inorg - soil	LINUTO	440500.00	440500 440	440500 447	440500 440	440500 400
Our Reference:	UNITS	112590-96	112590-116	112590-117	112590-118	112590-120
Your Reference		HA105	HA113	HA113	HA114	HA115
Depth		0.2	0-0.1	0.3-0.4	0-0.1	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	67	40	130	29	7.9
	T	Т	Γ	Γ	Т	
Miscellaneous Inorg - soil	LINITTO	110500 100	110500 105	110500 100	110500 100	440500 400
Our Reference:	UNITS	112590-122	112590-125	112590-128	112590-129	112590-130
Your Reference		HA116	HA117	HA119	QA4a	HA119
Depth		0-0.1	0-0.1	0-0.1	-	0.3-0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	28	13	76	130	130
	T	Т	T	T	T	
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-131	112590-133	112590-135	112590-136	112590-137
Your Reference		HA120	HA121	HA122	HA122	QA5a
Depth		0-0.1	0-0.1	0-0.1	0.3-0.4	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	13	17	39	68	74
		T	T	T	T	
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-138	112590-139	112590-140	112590-141	112590-142
Your Reference		HA123	HA123	HA123	HA124	HA124
Depth		Surface	0.1	0.2	Surface	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	29	62	81	170	110
		Ι			Ι	
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-145	112590-146	112590-147	112590-152	
Your Reference		HA125	HA125	HA125	TP116	
Depth		Surface	0.1	0.15	0.5-0.7	
Type of sample		Soil	Soil	Soil	Soil	
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	
Fluoride (1:5 soil:water)	mg/kg	37	41	75	37	
,		I	I	I	I	_

	Γ	T	T	T	T	Γ
Moisture						
Our Reference:	UNITS	112590-1	112590-4	112590-7	112590-11	112590-13
Your Reference		TP101	TP104	TP107	TP111	TP113
Depth		-	0-0.2	-	0-0.3	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	12	11	11	13	17
Moisture						
Our Reference:	UNITS	112590-15	112590-16	112590-17	112590-18	112590-19
Your Reference		TP115	TP116	TP117	QA1	TP118
Depth		-	0.1-0.3	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	16	19	17	16	12
		ı	1	ı	ı	
Moisture						
Our Reference:	UNITS	112590-20	112590-21	112590-23	112590-24	112590-25
Your Reference		TP119	TP120	TP122	TP123	TP124
Depth		-	-	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	10	9.6	12	15	11
		T		T	T	
Moisture						
Our Reference:	UNITS	112590-26	112590-27	112590-28	112590-30	112590-31
Your Reference		TP125	TP126	TP127	TP128	TP128
Depth		-	-	-	0.1	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	12	6.4	11	8.4	2.6
		· I	·	· 	· 	
Moisture						
Our Reference:	UNITS	112590-33	112590-35	112590-36	112590-37	112590-38
Your Reference		TP129	QA1a	TP130	TP130	TP131
Depth		0-0.3	-	0-0.3	0.6-0.7	0.1-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	12	11	4.3	15	5.9
	1	I	1	I	I	

	T		I		I	
Moisture Our Reference:	LINITO	440500 44	440500 40	140500 46	140500 40	440500 50
	UNITS	112590-41	112590-43	112590-46 TP133	112590-49	112590-52
Your Reference		TP132	TP132 0.4		TP134	TP135
Depth Time of commis		0.1	_	0.1-0.2	0.2	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	5.1	15	6.6	3.7	7.0
	T	T	T	T	Т	T
Moisture		440500 55				
Our Reference:	UNITS	112590-55	112590-56	112590-59	112590-61	112590-63
Your Reference		TP135	TP136	QA2a	TP137	TP137
Depth		0.4	0.1	-	0.1	0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	20	4.4	5.7	3.6	22
Moisture						
Our Reference:	UNITS	112590-66	112590-70	112590-74	112590-98	112590-102
Your Reference		TP138	TP139	TP140	HA106	HA107
Depth		0.2	0.1	0.1	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	8.4	17	10	12	22
		T	T	T	T	T
Moisture						
Our Reference:	UNITS	112590-105	112590-107	112590-108	112590-109	112590-110
Your Reference		HA108	HA109	HA109	HA110	HA110
Depth		0-0.1	0-0.1	0.3-0.4	0-0.1	0.3-0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	18	23	15	24	29
Moisture						
Our Reference:	UNITS	112590-111	112590-112	112590-113	112590-114	112590-116
Your Reference		HA111	QA3a	HA111	HA112	HA113
Depth		0-0.1	-	0.3-0.4	0-0.1	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	25	21	15	15	8.9
moiotaro	,,,		:	ı '~	ı .~	1 0.0

	_		T	ı		
Moisture						
Our Reference:	UNITS	112590-117	112590-118	112590-120	112590-122	112590-125
Your Reference		HA113	HA114	HA115	HA116	HA117
Depth		0.3-0.4	0-0.1	0-0.1	0-0.1	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	12	7.9	10	12	19
Moisture						440500 400
Our Reference:	UNITS	112590-128	112590-129	112590-130	112590-131	112590-133
Your Reference		HA119	QA4a	HA119	HA120	HA121
Depth		0-0.1	-	0.3-0.4	0-0.1	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	13	10	8.6	16	12
NA - industry						٦
Moisture	LINITO	440500 405	440500 400	440500 407	440500 450	
Our Reference:	UNITS	112590-135	112590-136	112590-137	112590-152	
Your Reference		HA122	HA122	QA5a	TP116	
Depth		0-0.1	0.3-0.4	-	0.5-0.7	
Type of sample		Soil	Soil	Soil	Soil	
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	
Moisture	%	7.9	11	12	19	

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA 22nd ED, 4500-F-C.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

Envirolab Reference: 112590

Revision No: R 00

		Cile	nt Referenc	e: A	S 130383			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II %RPD		
Date extracted	-			07/07/2 014	112590-1	07/07/2014 07/07/2014	LCS-8	07/07/2014
Date analysed	-			08/07/2 014	112590-1	08/07/2014 08/07/2014	LCS-8	08/07/2014
TRHC6 - C9	mg/kg	25	Org-016	<25	112590-1	<25 <25	LCS-8	119%
TRHC6 - C10	mg/kg	25	Org-016	<25	112590-1	<25 <25	LCS-8	119%
Benzene	mg/kg	0.2	Org-016	<0.2	112590-1	<0.2 <0.2	LCS-8	116%
Toluene	mg/kg	0.5	Org-016	<0.5	112590-1	<0.5 <0.5	LCS-8	126%
Ethylbenzene	mg/kg	1	Org-016	<1	112590-1	<1 <1	LCS-8	118%
m+p-xylene	mg/kg	2	Org-016	<2	112590-1	<2 <2	LCS-8	116%
o-Xylene	mg/kg	1	Org-016	<1	112590-1	<1 <1	LCS-8	121%
naphthalene	mg/kg	1	Org-014	<1	112590-1	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	101	112590-1	86 99 RPD: 14	LCS-8	97%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil					SII#	Base II Duplicate II %RPD		Recovery
Date extracted	-			07/07/2 014	112590-1	07/07/2014 07/07/2014	LCS-8	07/07/2014
Date analysed	-			07/07/2 014	112590-1	07/07/2014 07/07/2014	LCS-8	07/07/2014
TRHC10 - C14	mg/kg	50	Org-003	<50	112590-1	<50 <50	LCS-8	123%
TRHC 15 - C28	mg/kg	100	Org-003	<100	112590-1	<100 <100	LCS-8	117%
TRHC29 - C36	mg/kg	100	Org-003	<100	112590-1	<100 <100	LCS-8	96%
TRH>C10-C16	mg/kg	50	Org-003	<50	112590-1	<50 <50	LCS-8	123%
TRH>C16-C34	mg/kg	100	Org-003	<100	112590-1	<100 <100	LCS-8	117%
TRH>C34-C40	mg/kg	100	Org-003	<100	112590-1	<100 <100	LCS-8	96%
Surrogate o-Terphenyl	%		Org-003	99	112590-1	96 96 RPD:0	LCS-8	112%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			07/07/2 014	112590-1	7/07/2014 7/07/2014	LCS-8	07/07/2014
Date analysed	-			07/07/2 014	112590-1	7/07/2014 7/07/2014	LCS-8	07/07/2014
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 <0.1	LCS-8	117%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 <0.1	LCS-8	124%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 0.1	LCS-8	123%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	0.1 0.4 RPD: 120	LCS-8	122%

		Clie	nt Referenc	e: A	S 130383			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	0.1 0.4 RPD: 120	LCS-8	124%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 0.2	LCS-8	113%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	112590-1	<0.2 0.4	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	112590-1	0.07 0.21 RPD: 100	LCS-8	121%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 0.2	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 0.2	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	97	112590-1	101 102 RPD:1	LCS-8	103%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Acid Extractable metals in soil					Sm#	Base II Duplicate II %RPD		Recovery
Date digested	-			07/07/2	112590-1	07/07/2014 07/07/2014	LCS-1	07/07/2014
Date analysed	-			014 07/07/2 014	112590-1	07/07/2014 07/07/2014	LCS-1	07/07/2014
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	112590-1	<4 <4	LCS-1	90%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	112590-1	<0.4 <0.4	LCS-1	96%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	112590-1	3 3 RPD:0	LCS-1	95%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	112590-1	2 2 RPD:0	LCS-1	95%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	112590-1	5 6 RPD:18	LCS-1	94%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	112590-1	<0.1 <0.1	LCS-1	80%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	112590-1	8 10 RPD:22	LCS-1	95%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	112590-1	32 35 RPD:9	LCS-1	95%

				Clie	nt Referenc	e: AS	S 130383				
QUALITYCONTROL	UNΠ	TS	PQ	L	METHOD	Blank	Duplicate	Dup	olicate results	Spike Sm#	Spike %
Miscellaneous Inorg - soil							Sm#	Bas	se Il Duplicate II %RPD		Recovery
Date prepared		-				07/07/2 014	112590-1	07.	//07/2014 07/07/2014	LCS-1	07/07/2014
Date analysed		-				10/07/2	112590-1	10	/07/2014 10/07/2014	LCS-1	10/07/2014
Fluoride (1:5 soil:water)	m	ng/kg		0.5	Inorg-026	<0.5	112590-1		45 47 RPD:4	LCS-1	99%
QUALITYCONTROL	UNΠ	-	PQ		METHOD	Blank			- 11 11		
Moisture											
Date prepared		-				[NT]					
Date analysed		-				[NT]					
Moisture		%		0.1	Inorg-008	[NT]					
QUALITYCONTROL		UNITS	3	I	Dup.Sm#		Duplicate		Spike Sm#	Spike % Reco	very
vTRH(C6-C10)/BTEXN in Soil						Base+[Ouplicate+%RP	D			
Date extracted		-		1	12590-20	07/07/2	014 07/07/201	4	LCS-9	07/07/2014	4
Date analysed		-		1	12590-20	08/07/2	014 08/07/201	4	LCS-9	09/07/2014	4
TRHC6 - C9		mg/kg	3	1	12590-20		<25 <25		LCS-9	126%	
TRHC6 - C10		mg/kg	j	1	12590-20	,	<25 <25		LCS-9	126%	
Benzene		mg/kg	j	1	12590-20	<	<0.2 <0.2		LCS-9	123%	
Toluene		mg/kg	3	1	12590-20	<	<0.5 <0.5		LCS-9	123%	
Ethylbenzene		mg/kg	3	1	12590-20		<1 <1		LCS-9	126%	
m+p-xylene		mg/kg	j	1	12590-20		<2 <2		LCS-9	126%	
o-Xylene		mg/kg	j	1	12590-20		<1 <1		LCS-9	129%	
naphthalene		mg/kg	j	1	12590-20		<1 <1		[NR]	[NR]	
Surrogate aaa- Trifluorotoluene		%		1	12590-20	96	97 RPD:1		LCS-9	100%	
QUALITY CONTROL svTRH (C10-C40) in Soil		UNITS	3	I	Dup. Sm#		Duplicate Duplicate + %RP	חי	Spike Sm#	Spike % Reco	very
,					40500.00				100.0	07/07/004	4
Date extracted		-			12590-20		014 07/07/201		LCS-9	07/07/2014	
Date analysed		-	_		12590-20		014 07/07/201	4	LCS-9	07/07/2014	+
TRHC ₁₀ - C ₁₄		mg/kg			12590-20		<50 <50		LCS-9	132%	
TRHC15 - C28		mg/kg			12590-20		100 <100		LCS-9	131%	
TRHC29 - C36		mg/kg			12590-20		100 <100		LCS-9	98%	
TRH>C10-C16		mg/kg			12590-20		<50 <50			132%	
TRH>C16-C34		mg/kg			12590-20		100 <100		LCS-9	131%	
TRH>C34-C40		mg/kg	J		12590-20		100 <100		LCS-9	98%	
Surrogate o-Terphenyl		%		1	12590-20	95	93 RPD:2		LCS-9	119%	

		Client Reference	e: AS 130383		
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	_	112590-20	7/07/2014 7/07/2014	LCS-9	07/07/2014
Date analysed	_	112590-20	7/07/2014 7/07/2014	LCS-9	07/07/2014
Naphthalene	mg/kg	112590-20	<0.1 <0.1	LCS-9	116%
Acenaphthylene		112590-20	<0.1 <0.1	[NR]	
. ,	mg/kg				[NR]
Acenaphthene	mg/kg	112590-20	0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	112590-20	<0.1 <0.1	LCS-9	123%
Phenanthrene	mg/kg	112590-20	0.1 0.1 RPD:0	LCS-9	123%
Anthracene	mg/kg	112590-20	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	112590-20	0.5 0.5 RPD:0	LCS-9	122%
Pyrene	mg/kg	112590-20	0.5 0.5 RPD:0	LCS-9	123%
Benzo(a)anthracene	mg/kg	112590-20	0.4 0.3 RPD:29	[NR]	[NR]
Chrysene	mg/kg	112590-20	0.4 0.4 RPD:0	LCS-9	111%
Benzo(b+k)fluoranthene	mg/kg	112590-20	1.2 1 RPD:18	[NR]	[NR]
Benzo(a)pyrene	mg/kg	112590-20	0.58 0.54 RPD:7	LCS-9	121%
Indeno(1,2,3-c,d)pyrene	mg/kg	112590-20	0.5 0.4 RPD:22	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	112590-20	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	112590-20	0.4 0.4 RPD:0	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	112590-20	102 99 RPD:3	LCS-9	103%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	-	112590-20	07/07/2014 07/07/2014	LCS-2	07/07/2014
Date analysed	-	112590-20	07/07/2014 07/07/2014	LCS-2	07/07/2014
Arsenic	mg/kg	112590-20	<4 <4	LCS-2	91%
Cadmium	mg/kg	112590-20	<0.4 <0.4	LCS-2	95%
Chromium	mg/kg	112590-20	3 3 RPD:0	LCS-2	95%
Copper	mg/kg	112590-20	3 3 RPD:0	LCS-2	95%
Lead	mg/kg	112590-20	8 7 RPD:13	LCS-2	94%
Mercury	mg/kg	112590-20	<0.1 <0.1	LCS-2	85%
Nickel	mg/kg	112590-20	4 4 RPD:0	LCS-2	93%
Zinc	mg/kg	112590-20	20 19 RPD:5	LCS-2	94%

		Client Reference	e: A5 130383		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil			Base + Duplicate + %RPD		
Date prepared	-	112590-20	07/07/2014 07/07/2014	LCS-2	07/07/2014
Date analysed	-	112590-20	10/07/2014 10/07/2014	LCS-2	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	112590-20	28 28 RPD:0	LCS-2	102%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil			Base + Duplicate + %RPD		
Date extracted	-	112590-33	07/07/2014 07/07/2014	112590-4	07/07/2014
Date analysed	-	112590-33	08/07/2014 08/07/2014	112590-4	08/07/2014
TRHC6 - C9	mg/kg	112590-33	<25 <25	112590-4	98%
TRHC6 - C10	mg/kg	112590-33	<25 <25	112590-4	98%
Benzene	mg/kg	112590-33	<0.2 <0.2	112590-4	96%
Toluene	mg/kg	112590-33	<0.5 <0.5	112590-4	105%
Ethylbenzene	mg/kg	112590-33	<1 <1	112590-4	96%
m+p-xylene	mg/kg	112590-33	<2 <2	112590-4	95%
o-Xylene	mg/kg	112590-33	<1 <1	112590-4	98%
naphthalene	mg/kg	112590-33	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%	112590-33	94 100 RPD: 6	112590-4	99%
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil			Base + Duplicate + %RPD		
Date extracted	-	112590-33	07/07/2014 07/07/2014	112590-4	07/07/2014
Date analysed	-	112590-33	08/07/2014 08/07/2014	112590-4	07/07/2014
TRHC10 - C14	mg/kg	112590-33	<50 <50	112590-4	124%
TRHC15 - C28	mg/kg	112590-33	<100 <100	112590-4	120%
TRHC29 - C36	mg/kg	112590-33	<100 <100	112590-4	117%
TRH>C10-C16	mg/kg	112590-33	<50 <50	112590-4	124%
TRH>C16-C34	mg/kg	112590-33	<100 <100	112590-4	120%
TRH>C34-C40	mg/kg	112590-33	<100 <100	112590-4	117%
Surrogate o-Terphenyl	%	112590-33	93 105 RPD:12	112590-4	110%
QUALITY CONTROL PAHs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	112590-33	7/07/2014 7/07/2014	LCS-10	07/07/2014
Date analysed	-	112590-33	8/07/2014 8/07/2014	LCS-10	07/07/2014
Naphthalene	mg/kg	112590-33	<0.1 <0.1	LCS-10	117%
Acenaphthylene	mg/kg	112590-33	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	112590-33	0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	112590-33	<0.1 <0.1	LCS-10	124%
Phenanthrene	mg/kg	112590-33	0.4 <0.1	LCS-10	123%
Anthracene	mg/kg	112590-33	0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	112590-33	1 0.3 RPD:108	LCS-10	123%
Pyrene	mg/kg	112590-33	0.9 0.3 RPD:100	LCS-10	125%
Benzo(a)anthracene	mg/kg	112590-33	0.5 0.2 RPD:86	[NR]	[NR]
(-)	J -9	1	1 11 -100		

		Client Reference	e: AS 130383		
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Chrysene	mg/kg	112590-33	0.5 0.2 RPD:86	LCS-10	111%
Benzo(b+k)fluoranthene	mg/kg	112590-33	1.1 0.4 RPD: 93	[NR]	[NR]
Benzo(a)pyrene	mg/kg	112590-33	0.64 0.19 RPD:108	LCS-10	125%
Indeno(1,2,3-c,d)pyrene	mg/kg	112590-33	0.5 0.2 RPD:86	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	112590-33	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	112590-33	0.5 0.2 RPD:86	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	112590-33	100 100 RPD:0	LCS-10	103%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	-	112590-33	07/07/2014 07/07/2014	LCS-3	07/07/2014
Date analysed	-	112590-33	07/07/2014 07/07/2014	LCS-3	07/07/2014
Arsenic	mg/kg	112590-33	6 6 RPD:0	LCS-3	91%
Cadmium	mg/kg	112590-33	<0.4 <0.4	LCS-3	96%
Chromium	mg/kg	112590-33	15 21 RPD:33	LCS-3	97%
Copper	mg/kg	112590-33	8 9 RPD:12	LCS-3	95%
Lead	mg/kg	112590-33	9 7 RPD:25	LCS-3	95%
Mercury	mg/kg	112590-33	<0.1 <0.1	LCS-3	87%
Nickel	mg/kg	112590-33	47 49 RPD: 4	LCS-3	95%
Zinc	mg/kg	112590-33	47 39 RPD:19	LCS-3	96%
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil			Base + Duplicate + %RPD		
Date prepared	-	112590-35	07/07/2014 07/07/2014	LCS-3	07/07/2014
Date analysed	-	112590-35	10/07/2014 10/07/2014	LCS-3	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	112590-35	1098 1127 RPD: 3	LCS-3	99%
QUALITY CONTROL vTRH(C6-C10)/BTEXN in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	112590-55	07/07/2014 07/07/2014	112590-35	07/07/2014
Date analysed	-	112590-55	08/07/2014 08/07/2014	112590-35	09/07/2014
TRHC6 - C9	mg/kg	112590-55	<25 <25	112590-35	98%
TRHC6 - C10	mg/kg	112590-55	<25 <25	112590-35	98%
Benzene	mg/kg	112590-55	<0.2 <0.2	112590-35	96%
Toluene	mg/kg	112590-55	<0.5 <0.5	112590-35	103%
Ethylbenzene	mg/kg	112590-55	<1 <1	112590-35	97%
m+p-xylene	mg/kg	112590-55	<2 <2	112590-35	96%
o-Xylene	mg/kg	112590-55	<1 <1	112590-35	99%
naphthalene	mg/kg	112590-55	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%	112590-55	92 92 RPD:0	112590-35	93%

		Client Referenc	e: AS 130383		
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil			Base + Duplicate + %RPD		
Date extracted	-	112590-55	07/07/2014 07/07/2014	112590-35	07/07/2014
Date analysed	-	112590-55	07/07/2014 07/07/2014	112590-35	07/07/2014
TRHC10 - C14	mg/kg	112590-55	<50 <50	112590-35	98%
TRHC15 - C28	mg/kg	112590-55	<100 <100	112590-35	114%
TRHC29 - C36	mg/kg	112590-55	<100 <100	112590-35	87%
TRH>C10-C16	mg/kg	112590-55	<50 <50	112590-35	98%
TRH>C16-C34	mg/kg	112590-55	<100 <100	112590-35	114%
TRH>C34-C40	mg/kg	112590-55	<100 <100	112590-35	87%
Surrogate o-Terphenyl	%	112590-55	93 91 RPD:2	112590-35	108%
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	112590-55	7/07/2014 7/07/2014	LCS-11	07/07/2014
Date analysed	-	112590-55	8/07/2014 8/07/2014	LCS-11	07/07/2014
Naphthalene	mg/kg	112590-55	<0.1 <0.1	LCS-11	115%
Acenaphthylene	mg/kg	112590-55	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	112590-55	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	112590-55	<0.1 <0.1	LCS-11	114%
Phenanthrene	mg/kg	112590-55	<0.1 <0.1	LCS-11	120%
Anthracene	mg/kg	112590-55	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	112590-55	<0.1 <0.1	LCS-11	118%
Pyrene	mg/kg	112590-55	<0.1 <0.1	LCS-11	118%
Benzo(a)anthracene	mg/kg	112590-55	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	112590-55	<0.1 <0.1	LCS-11	105%
Benzo(b+k)fluoranthene	mg/kg	112590-55	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	112590-55	<0.05 <0.05	LCS-11	114%
Indeno(1,2,3-c,d)pyrene	mg/kg	112590-55	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	112590-55	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	112590-55	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	112590-55	104 100 RPD:4	LCS-11	108%

		Client Reference	e: AS 130383		
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in			Base + Duplicate + %RPD		
soil					
Date digested	-	112590-55	07/07/2014 07/07/2014	112590-4	07/07/2014
Date analysed	-	112590-55	07/07/2014 07/07/2014	112590-4	07/07/2014
Arsenic	mg/kg	112590-55	6 5 RPD:18	112590-4	84%
Cadmium	mg/kg	112590-55	<0.4 <0.4	112590-4	92%
Chromium	mg/kg	112590-55	13 14 RPD:7	112590-4	91%
Copper	mg/kg	112590-55	12 9 RPD:29	112590-4	101%
Lead	mg/kg	112590-55	16 31 RPD:64	112590-4	90%
Mercury	mg/kg	112590-55	<0.1 <0.1	112590-4	88%
Nickel	mg/kg	112590-55	6 6 RPD:0	112590-4	90%
Zinc	mg/kg	112590-55	47 120 RPD:87	112590-4	83%
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil			Base + Duplicate + %RPD		
Date prepared	-	112590-59	07/07/2014 07/07/2014	112590-4	07/07/2014
Date analysed	-	112590-59	10/07/2014 10/07/2014	112590-4	07/07/2014
Fluoride (1:5 soil:water)	mg/kg	112590-59	6.0 7.0 RPD:15	112590-4	#
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	112590-105	7/07/2014 7/07/2014	112590-4	07/07/2014
Date analysed	-	112590-105	8/07/2014 8/07/2014	112590-4	07/07/2014
Naphthalene	mg/kg	112590-105	<0.1 <0.1	112590-4	118%
Acenaphthylene	mg/kg	112590-105	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	112590-105	0.4 0.4 RPD:0	[NR]	[NR]
Fluorene	mg/kg	112590-105	0.2 0.2 RPD:0	112590-4	126%
Phenanthrene	mg/kg	112590-105	3.5 4.1 RPD: 16	112590-4	126%
Anthracene	mg/kg	112590-105	0.8 1.0 RPD:22	[NR]	[NR]
Fluoranthene	mg/kg	112590-105	12 15 RPD:22	112590-4	127%
Pyrene	mg/kg	112590-105	12 15 RPD:22	112590-4	129%
Benzo(a)anthracene	mg/kg	112590-105	9.0 11 RPD: 20	[NR]	[NR]
Chrysene	mg/kg	112590-105	9.3 11 RPD:17	112590-4	116%
Benzo(b+k)fluoranthene	mg/kg	112590-105	22 26 RPD:17	[NR]	[NR]
Benzo(a)pyrene	mg/kg	112590-105	13 16 RPD:21	112590-4	126%
Indeno(1,2,3-c,d)pyrene	mg/kg	112590-105	9.1 11 RPD: 19	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	112590-105	0.9 1.4 RPD:43	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	112590-105	8.9 11 RPD:21	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	112590-105	100 102 RPD:2	112590-4	102%

		Client Reference	e: AS 130383		
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
		IN ITT	DITI	440500.05	07/07/2044
Date digested	-	[NT]	[NT]	112590-35	07/07/2014
Date analysed	-	[NT]	[NT]	112590-35	07/07/2014
Arsenic	mg/kg	[NT]	[NT]	112590-35	87%
Cadmium	mg/kg	[NT]	[NT]	112590-35	93%
Chromium	mg/kg	[NT]	[NT]	112590-35	107%
Copper	mg/kg	[NT]	[NT]	112590-35	71%
Lead	mg/kg	[NT]	[NT]	112590-35	86%
Mercury	mg/kg	[NT]	[NT]	112590-35	95%
Nickel	mg/kg	[NT]	[NT]	112590-35	79%
Zinc	mg/kg	[NT]	[NT]	112590-35	113%
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	112590-33	07/07/2014
Date analysed	-	[NT]	[NT]	112590-33	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	[NT]	[NT]	112590-33	108%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil		•	Base + Duplicate + %RPD	·	
Date extracted	-	112590-117	7/07/2014 7/07/2014	112590-35	07/07/2014
Date analysed	-	112590-117	8/07/2014 8/07/2014	112590-35	07/07/2014
Naphthalene	mg/kg	112590-117	<0.1 <0.1	112590-35	107%
Acenaphthylene	mg/kg	112590-117	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	112590-117	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	112590-117	<0.1 <0.1	112590-35	114%
Phenanthrene	mg/kg	112590-117	0.9 0.8 RPD:12	112590-35	115%
Anthracene	mg/kg	112590-117	0.3 0.2 RPD:40	[NR]	[NR]
Fluoranthene	mg/kg	112590-117	3.2 3.3 RPD:3	112590-35	117%
Pyrene	mg/kg	112590-117	3.1 3.3 RPD:6	112590-35	118%
Benzo(a)anthracene	mg/kg	112590-117	1.5 1.9 RPD:24	[NR]	[NR]
Chrysene	mg/kg	112590-117	1.6 2.1 RPD:27	112590-35	105%
Benzo(b+k)fluoranthene	mg/kg	112590-117	3.6 5.0 RPD:33	[NR]	[NR]
Benzo(a)pyrene	mg/kg	112590-117	1.9 2.5 RPD:27	112590-35	113%
Indeno(1,2,3-c,d)pyrene	mg/kg	112590-117	1.3 1.7 RPD:27	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	112590-117	0.2 0.2 RPD:0	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	112590-117	1.2 1.7 RPD:34	[NR]	[NR]
	111g/kg %	112590-117	98 106 RPD:8	112590-35	103%
Surrogate p-Terphenyl-d14	7/0	112390-117	30 100 KPD. 0	112080-35	103%

		Client Reference	e: AS 130383		
QUALITY CONTROL Acid Extractable metals in	UNITS	Dup. Sm#	Duplicate Base+Duplicate+%RPD	Spike Sm#	Spike % Recovery
soil					
Date digested	-	[NT]	[NT]	112590-74	07/07/2014
Date analysed	-	[NT]	[NT]	112590-74	07/07/2014
Arsenic	mg/kg	[NT]	[NT]	112590-74	87%
Cadmium	mg/kg	[NT]	[NT]	112590-74	94%
Chromium	mg/kg	[NT]	[NT]	112590-74	95%
Copper	mg/kg	[NT]	[NT]	112590-74	100%
Lead	mg/kg	[NT]	[NT]	112590-74	86%
Mercury	mg/kg	[NT]	[NT]	112590-74	83%
Nickel	mg/kg	[NT]	[NT]	112590-74	90%
Zinc	mg/kg	[NT]	[NT]	112590-74	89%
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	112590-90	07/07/2014
Date analysed	_	[NT]	[NT]	112590-90	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	[NT]	[NT]	112590-90	95%
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil		'	Base + Duplicate + %RPD	'	
Date extracted	-	112590-136	7/07/2014 7/07/2014	112590-107	07/07/2014
Date analysed	-	112590-136	8/07/2014 8/07/2014	112590-107	07/07/2014
Naphthalene	mg/kg	112590-136	<0.1 <0.1	112590-107	105%
Acenaphthylene	mg/kg	112590-136	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	112590-136	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	112590-136	<0.1 <0.1	112590-107	115%
Phenanthrene	mg/kg	112590-136	0.7 0.7 RPD:0	112590-107	113%
Anthracene	mg/kg	112590-136	0.2 0.2 RPD:0	[NR]	[NR]
Fluoranthene	mg/kg	112590-136	2.6 2.7 RPD:4	112590-107	107%
Pyrene	mg/kg	112590-136	2.5 2.7 RPD:8	112590-107	108%
Benzo(a)anthracene	mg/kg	112590-136	1.4 1.5 RPD:7	[NR]	[NR]
Chrysene	mg/kg	112590-136	1.7 1.8 RPD:6	112590-107	105%
Benzo(b+k)fluoranthene	mg/kg	112590-136	3.8 4.2 RPD:10	[NR]	[NR]
Benzo(a)pyrene	mg/kg	112590-136	1.7 2.0 RPD:16	112590-107	117%
Indeno(1,2,3-c,d)pyrene	mg/kg	112590-136	1.2 1.4 RPD:15	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	112590-136	0.2 0.2 RPD:0	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	112590-136	1.3 1.4 RPD:7	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	112590-136	77 102 RPD:28	112590-107	97%

Client Reference: AS 130383 QUALITYCONTROL UNITS Dup. Sm# Duplicate Miscellaneous Inorg - soil Base + Duplicate + %RPD 112590-89 07/07/2014 || 07/07/2014 Date prepared Date analysed 112590-89 10/07/2014 | 10/07/2014 mg/kg Fluoride (1:5 soil:water) 112590-89 90 || 92 || RPD: 2 QUALITYCONTROL UNITS Dup.Sm# **Duplicate** Miscellaneous Inorg - soil Base + Duplicate + %RPD Date prepared 112590-129 07/07/2014 | 07/07/2014 10/07/2014 || 10/07/2014 Date analysed 112590-129 Fluoride (1:5 soil:water) 130 || 130 || RPD: 0 mg/kg 112590-129 QUALITYCONTROL UNITS Duplicate Dup.Sm# Miscellaneous Inorg - soil Base + Duplicate + %RPD Date prepared 112590-141 $07/07/2014\,||\,07/07/2014$ Date analysed 112590-141 10/07/2014 || 10/07/2014

112590-141

170 || 160 || RPD: 6

mg/kg

Fluoride (1:5 soil:water)

Report Comments:

Total Recoverable Hydrocarbons in soil:# Percent recovery is not possible to report as the high concentration of analytes in the sa have caused interference.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteriae has been exceeded for 112590-55 for Pb and Zn. Therefore a triplicate result has been issued as laboratory sample number 112590-153.

PAH's in soil: The RPD for duplicate results is accepted due to the non homogenous nature of the sample/s.

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

Envirolab Reference: 112590 Page 43 of 44

Revision No: R 00

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 112590 Page 44 of 44 Revision No: R 00

5/8/ |[03/4

			CHAIN	OF C	USTC	DQ.	OF CUSTODY - Client	#					4	
			П		AB SE	NVIROLAB SERVICES	<i>(</i>	į					CEUAVIANT	
5	Floring Robel	SON		Client Proj	ORO F	Client Project Name and Number: HUDIZO ASI30383	83		En.	rirolab	Envirolab Services 12 Ashley St, Chatswo	S Yood, N	Envirolab Services 12 Ashley St. Chatswood, NSW. 2067	
Address: <	へんだってのカカカストンへんがあっている。 あっちょう	が表別	00000	PO No.:						•	•			
	というとことのと	NXW 22	27.2	CINVITORED S	Chyrolad Services Quote No. :	te No. :			<u> </u>	ne: 02 9	Phone: 02 9910 6200	_		
Email: 16	egreen relacenvironcero com	WINDO	20/0 -(BW	Or choose: (Standard	s required:	or choose: (Standard) 1 day / 2 day / 3 day	ve/ 3 dav		Fax:	: 02 9 	02 9910 6201 ahie@envirol	1 1944 1944		
Phone:	Merstant	Fax;	-	Note: Inform lab is surcharge applies	ab in advance II	fugent tumaro	Note: Inform lab in advance if urgent tumaround is required - surcharge applies			Contact: Ailean His		iauser.	Contact: Allege Lie	
	Sample information	nation					Tests	Tests Required		7				Ţ
Envirolab Sample ID	Clent Sample ID	Date	Type of sample	SHY Another Ansme									Provide as much information about the sample as you can	
50	かったいという。 かっかい		125		1	+	1	1	+		1	-		
<u>ب</u>	V /	L	1	A	$\frac{1}{1}$	1	+					-	112503	
10	7558 177 JOL	5-22				+	+	1	$\frac{1}{1}$	+		1		_
99	upc			X	-	+	+	+	-	+	1	+		
B	DUP D			1 X	-		100 A	. 1000			+	+		T
9,0	NUPE	-		 X				Elivironimental Division Svdnev	DIVISION	+		-		T
, o	コガド			X			\$	Mork Order	ž	-	 	+		Ī
	JW 77.7		*	X			· (-		*	1 6000 COM	T
						+	T V	ES1414/32	132			₩	AIS to go	3
						_ 						-	ŕ	
					1	1				+	1			_
										+	+			\neg
							Telephone	Telephone: +61-2-8784 8555	7784 8555	+-		+		-
Relinquished	Relinquished by (company): (#1 S			 										
Print Name:	7			Received by (company)	(Xuedmoo)	11/1/6			Sampl	les Receiv	ed: Cool or	Ambient	Samples Received: Cool or Ambient (circle one)	_
Date & Time:	1 1	11:30		Parte & Time:			75)/	1415	Tempy	erature Re	Temperature Recieved at:		(if applicable)	
Signature:	2			Signature:			1			ported by:	Transported by: Hand delivered / courier	rered / ca	ouner	
												ž	Page No:	٦

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1,

CERTIFICATE OF ANALYSIS

Work Order : **ES1414732** Page : 1 of 3

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : FIONA ROBINSON Contact : Client Services

Address : PO BOX 564 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

MAITLAND NSW. AUSTRALIA 2320

Facsimile : +61 02 49344359 Facsimile : +61-2-8784 8500

Project : HYDRO AS130383 QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 04-JUL-2014

 Sampler
 : KG
 Issue Date
 : 11-JUL-2014

Site : ----

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

 Signatories
 Position
 Accreditation Category

 Ankit Joshi
 Inorganic Chemist
 Sydney Inorganics

 Nanthini Coilparampil
 Laboratory Manager - Inorganics
 Sydney Inorganics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 3 Work Order : ES1414732

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO AS130383

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

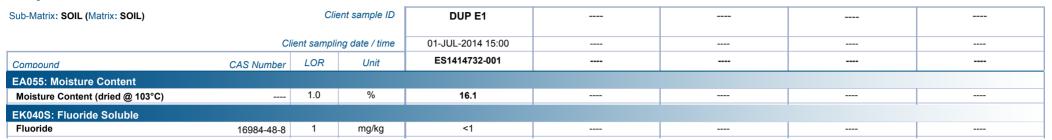
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 3 of 3 Work Order : ES1414732

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO AS130383

Analytical Results

QUALITY CONTROL REPORT

: ES1414732 **Work Order** Page : 1 of 4

Client Laboratory : Environmental Division Sydney **ENVIRON AUSTRALIA PTY LTD**

Contact : FIONA ROBINSON Contact · Client Services

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 PO BOX 564

MAITLAND NSW. AUSTRALIA 2320

E-mail : frobinson@environcorp.com.au E-mail : sydney@alsglobal.com

Telephone : +61 02 49344354 +61-2-8784 8555 Telephone Facsimile +61 02 49344359 Facsimile +61-2-8784 8500

: HYDRO AS130383 Project QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site

C-O-C number **Date Samples Received** : 04-JUL-2014 : ----Sampler : KG Issue Date : 11-JUL-2014

No. of samples received : 1

Quote number : EN/072/14 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Order number

NATA Accredited

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics Nanthini Coilparampil Laboratory Manager - Inorganics Sydney Inorganics

> Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 4
Work Order : ES1414732

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO AS130383

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 4 Work Order : ES1414732

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO AS130383

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL						Laboratory E	Ouplicate (DUP) Report	•								
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)							
EA055: Moisture Co	ntent (QC Lot: 3532612)															
ES1414733-001	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	18.0	18.1	0.0	0% - 50%							
ES1414866-001	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	14.0	14.8	5.6	0% - 50%							
EK040S: Fluoride So	oluble (QC Lot: 3530034)															
ES1414732-001	DUP E1	EK040S: Fluoride	16984-48-8	1	mg/kg	<1	<1	0.0	No Limit							

Page : 4 of 4 Work Order : ES1414732

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO AS130383

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	CAS Number LOR Unit Result Concentration			LCS	Low	High	
EK040S: Fluoride Soluble (QCLot: 3530034)								
EK040S: Fluoride	16984-48-8	1.0	mg/kg	<1	25.0 mg/kg	103	69	117

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ma	trix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK040S: Fluoride S	Soluble (QCLot: 3530034)						
ES1414732-001	DUP E1	EK040S: Fluoride	16984-48-8	125 mg/kg	106	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (M	IS) and Matrix Spil	ke Duplicate	(MSD) Repor	t	
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPD	s (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EK040S: Fluoride S	Soluble (QCLot: 3530034)									
ES1414732-001	DUP E1	EK040S: Fluoride	16984-48-8	125 mg/kg	106		70	130		

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES1414732** Page : 1 of 5

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : FIONA ROBINSON Contact : Client Services

Address : PO BOX 564 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

MAITLAND NSW, AUSTRALIA 2320

Telephone : +61 02 49344354 Telephone : +61-2-8784 8555
Facsimile : +61 02 49344359 Facsimile : +61-2-8784 8500

Project : HYDRO AS130383 QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : --- Date Samples Received
 : 04-JUL-2014

 Sampler
 : KG
 Issue Date
 : 11-JUL-2014

Order number : ---
No. of samples received

Quote number : EN/072/14 No. of samples received : 1

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 5 Work Order : ES1414732

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO AS130383

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: × = Holding time breach; ✓ = Within holding time.

Some Parks

Future (Proportion | Proportion
							3 - 3
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content							
Soil Glass Jar - Unpreserved (EA055-103) DUP E1	01-JUL-2014				09-JUL-2014	15-JUL-2014	✓
EK040S: Fluoride Soluble							
Soil Glass Jar - Unpreserved (EK040S)							
DUP E1	01-JUL-2014	08-JUL-2014	08-JUL-2014	✓	08-JUL-2014	05-AUG-2014	✓

Page : 3 of 5 Work Order ES1414732

Client **ENVIRON AUSTRALIA PTY LTD**

HYDRO AS130383 Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	: × = Quality Co	ntrol frequency no	of within specification; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	unt		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Fluoride - Soluble	EK040S	1	1	100.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Moisture Content	EA055-103	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Fluoride - Soluble	EK040S	1	1	100.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Fluoride - Soluble	EK040S	1	1	100.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Fluoride - Soluble	EK040S	1	1	100.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page : 4 of 5 Work Order : ES1414732

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO AS130383

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Fluoride - Soluble	EK040S	SOIL	APHA 21st ed., 4500 FC Soluble Fluoride is determined after a 1:5 soil/water extract using an ion selective electrode.
Preparation Methods	Method	Matrix	Method Descriptions
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.

Page : 5 of 5 Work Order : ES1414732

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO AS130383

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

	20100			0/0/	- 1			Signature:	:-			Signature: P
Corrier	elivered	Hand o	Transported by: Hand delivered / courier	1435	64/7/14	(5.1		Date & Time:		0 0	1 41/4/4	
(if applicable)	ā	ecieved a	Temperature Recieved at:	Tem	6	300-X 1/2/1/20	ne:	Print Name:		;	⊾ I	Print Name:
Samples Received: Cool or Ambient (circle one)	or Ambie	red: Cool	ies Recei	Sam		y): 0, 0	Received by (company):	Received			Relinquished by (company): @LS	linquished by
		-	├- 									
		\dashv	on .	ne: +61-2-8784 8555	Telephone :							
		\dashv										
	1	+	-		-							
		$\frac{1}{1}$	- , i									
(mu)	·									<u></u>	AECS HWIDE OVERSE	43 AT
ALK FOR SOUND			_	1414100	100					30/6/14	ABC - MINIOS O.Y-1.0	72
Please senoto	*		 	`^^^^\\\	Ŭ			4			DAP # 4	
•				Work Order				X			NA I	
			 	Sydney				\ <u>\</u>			SUP G	000
			- 	Environmental Division	Envir			X		4	2255B155:03-04	A LA
•	X									2	5435BIS 0102	, <u> </u>
	_						_	K			FO-0-15/18/21/21	
-	X	_								\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	FC538134:02013	
		\dashv						K	5016	THE 12	PL25 < BI34:0-0:12	外系
sample as you can	Но						PA	Solu Pui				
Provide as much information about the	LD						HS	pla vide	Type of sample	Date	Client Sample ID	Envirolab Sample ID
Comments]	-		equired	Tests Requi					ation	Sample information	
		een His	Contact: Alleen Hie	Icor			applies	surcharge applies		rax:	20747	erione.
		i			nd is required -	Note: Inform lab in advance if urgent turnaround is required -	m lab in advanc	Note: Info	•		にからいとがた	-
E-mail: ahie@envirolabservices.com.au	rolabse	e@envi	ıail: ahi		/ 3 day	Or chooses standard / 1 day / 2 day / 3 day	Standard	Or choos	MONO CON	may ce	_	Email: KGY
	01	02 9910 6201	: 02:	Fax:			Date results required:	Date res	2		he Junchan I	12
	8	910 62	Phone: 02 9910 6200	Pho		ote No. :	Envirolab Services Quote No. :	Envirola	55 Clabeld		THERE TENED	Address: Vu
		,						PO No.:	1	ΓII	JESTU GREENFU	Sampler:
12 Ashley St, Chatswood, NSW, 2067	Wood,	t Chat	Ashley S	12	03	AS 130383	HYDRO A	#4		0.0	NOSINIBIOSI ANOS	Mgr: 7
	es	Servic	Envirolab Services	En		nd Number:	Client Project Name and Number:	Client P			NUBBINN	cilent: E
Litt II VIUU						ENVIROLAB SERVICES	DLAB SI	NVIR	Е			
(Fnvirolah)		+		7	Clien	- Ago		C	CHAIN OF CUSTODY - Client			
\ /				•	•		}	1				

CERTIFICATE OF ANALYSIS

Work Order Page ES1414735 : 1 of 3

Client **ENVIRON AUSTRALIA PTY LTD** Laboratory : Environmental Division Sydney

Contact : FIONA ROBINSON Contact : Client Services

Address : PO BOX 564 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

MAITLAND NSW. AUSTRALIA 2320

E-mail E-mail : frobinson@environcorp.com.au : sydney@alsglobal.com Telephone Telephone : +61 02 49344354 : +61-2-8784 8555

Facsimile Facsimile : +61 02 49344359 : +61-2-8784 8500

Project QC Level : HYDRO AS130383 : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number

C-O-C number **Date Samples Received** : 04-JUL-2014 Sampler Issue Date : KG : 11-JUL-2014

Site

: 1 Quote number No. of samples analysed · FN/072/14 : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category Inorganic Chemist Ankit Joshi Sydney Inorganics Laboratory Manager - Inorganics Nanthini Coilparampil Sydney Inorganics

No. of samples received

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 3 Work Order : ES1414735

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO AS130383

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

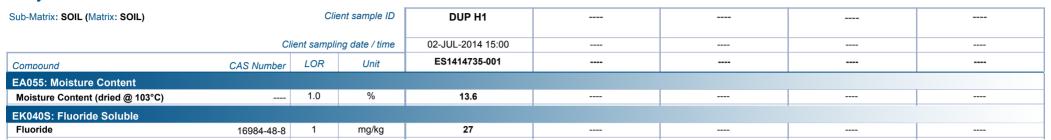
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 3 of 3 Work Order : ES1414735

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO AS130383

Analytical Results

QUALITY CONTROL REPORT

: ES1414735 **Work Order** Page : 1 of 4

Client Laboratory : Environmental Division Sydney **ENVIRON AUSTRALIA PTY LTD**

Contact : FIONA ROBINSON Contact · Client Services

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 PO BOX 564

MAITLAND NSW. AUSTRALIA 2320

E-mail : frobinson@environcorp.com.au E-mail : sydney@alsglobal.com

Telephone : +61 02 49344354 +61-2-8784 8555 Telephone Facsimile +61 02 49344359 Facsimile +61-2-8784 8500

: HYDRO AS130383 Project QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site

C-O-C number **Date Samples Received** : 04-JUL-2014 : ----Sampler : KG Issue Date : 11-JUL-2014

Order number No. of samples received : 1

Quote number : EN/072/14 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

NATA Accredited

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics Nanthini Coilparampil Laboratory Manager - Inorganics Sydney Inorganics

> Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 4
Work Order : ES1414735

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO AS130383

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 4 Work Order : ES1414735

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO AS130383

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL						Laboratory E	Ouplicate (DUP) Repor	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ntent (QC Lot: 3535469)								
ES1414892-002	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	10.7	9.8	8.4	0% - 50%
EK040S: Fluoride So	oluble (QC Lot: 3536676)								
ES1414735-001	DUP H1	EK040S: Fluoride	16984-48-8	1	mg/kg	27	26	0.0	0% - 20%

Page : 4 of 4 Work Order : ES1414735

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO AS130383

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number LOR Unit Result Concentration				Concentration	LCS	Low	High
EK040S: Fluoride Soluble (QCLot: 3536676)								
EK040S: Fluoride	16984-48-8	1.0	mg/kg	<1	25.0 mg/kg	103	69	117

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ма	trix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK040S: Fluoride S	Soluble (QCLot: 3536676)						
ES1414735-001	DUP H1	EK040S: Fluoride	16984-48-8	25.0 mg/kg	105	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (M	IS) and Matrix Spil	ke Duplicate	(MSD) Repor	t	
				Spike	Spike Rec	covery (%)	Recovery	Limits (%)	RPD:	s (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EK040S: Fluoride S	oluble (QCLot: 3536676)									
ES1414735-001	DUP H1	EK040S: Fluoride	16984-48-8	25.0 mg/kg	105		70	130		

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES1414735** Page : 1 of 5

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : FIONA ROBINSON Contact : Client Services

Address : PO BOX 564 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

MAITLAND NSW, AUSTRALIA 2320

Telephone : +61 02 49344354 Telephone : +61-2-8784 8555
Facsimile : +61 02 49344359 Facsimile : +61-2-8784 8500

Project : HYDRO AS130383 QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : --- Date Samples Received
 : 04-JUL-2014

 Sampler
 : KG
 Issue Date
 : 11-JUL-2014

Order number : ---No. of samples received

No. of samples received : 1

Quote number : EN/072/14

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 5 Work Order ES1414735

Matrix: SOIL

Client **ENVIRON AUSTRALIA PTY LTD**

Project HYDRO AS130383

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: **x** = Holding time breach ; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation

EA055: Moisture Content							
Soil Glass Jar - Unpreserved (EA055-103) DUP H1	02-JUL-2014				10-JUL-2014	16-JUL-2014	
	020022011						
EK040S: Fluoride Soluble							
Soil Glass Jar - Unpreserved (EK040S)							
DUP H1	02-JUL-2014	11-JUL-2014	09-JUL-2014	<u>*</u>	11-JUL-2014	08-AUG-2014	✓

Page : 3 of 5 Work Order ES1414735

Client **ENVIRON AUSTRALIA PTY LTD**

HYDRO AS130383 Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	: 🗴 = Quality Coi	ntrol frequency no	of within specification; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		Co	unt		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Fluoride - Soluble	EK040S	1	1	100.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Moisture Content	EA055-103	1	4	25.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Fluoride - Soluble	EK040S	1	1	100.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Fluoride - Soluble	EK040S	1	1	100.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Fluoride - Soluble	EK040S	1	1	100.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page : 4 of 5 Work Order : ES1414735

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO AS130383

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Fluoride - Soluble	EK040S	SOIL	APHA 21st ed., 4500 FC Soluble Fluoride is determined after a 1:5 soil/water extract using an ion selective electrode.
Preparation Methods	Method	Matrix	Method Descriptions
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.

Page : 5 of 5 Work Order : ES1414735

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO AS130383

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: SOIL

Matrix. Soil						
Method	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
EK040S: Fluoride Soluble						
Soil Glass Jar - Unpreserved						
DUP H1	11-JUL-2014	09-JUL-2014	2			

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

Appendix H

Laboratory Reports for Groundwater

gattohetonoussessess												,			www.sgroves					The second secon	- Constitution of the Cons					HE S LOY SOME	analysis	as purp B	
Actor Williams			NOW JOEZ	1007 LACH !			Wervices.com.au			Provide as much information about the sample as you can		1338 G G S	Matay Sample												000000000	2	(Handinakia)	d / courier	Page No:
			lices to the		5200	1009	virolabs	0		(2,20H		+	+	97		-	-				-	-		-	X	die de la	daft.	f delinere	
		Consignation Consister	17 Ashley of Chatramond New Joes		Phone: 02 9910 6200	Fax: 02 9910 6201	25 25- 2000000 1- 40000 1-2720	Contact: Alleen Hie						Envirolab Services	Charswood VSW 2067	- N - C - V	11/83	10 1 P	0010 D	A Land On Manager	Cenack	Security: VacibBroken/Non-				Samiles Bereined: Crol or Ambin of City	Temperature Recieved at:	Transported by: Hand delivered / courier	
nt									Tests Regulmed					de l'union		- No.		Date Received:	Time Received	Received by	A Series	Coc niv.)				Sand		
DY - Clie	SERVICES	Mirmhor	~ ~		No. :		day / 2 day / 3 day	Note: Inform lab in 30 vance if urgent turnaround is required surcharge applies	Test	HYGERT)								X	X	X	X	X		X		5)2	7)	(14. 10000	
CUSTO	ENVIROLAB SER	Pomiect Name and	A5130383	0.:	Envirolab Services Quote No. :	Date results required:	Or choose standard 1 day / 2 day / 3 day	Note: Inform lab in Sovance if w surcharge applies		muniming Schout HgT			T V			XX	XX	XX	X	X	X	XX	XXX	X	汉文	Received by (company):	Print Name:	Signature:	CMIC:
CHAIN OF CUSTODY - Client	ENVI	Clien		PO No.:						Type of sample SALD AND AND AND AND AND AND AND AND AND AN	X JAJUST	X	X	K	X	X	X	4		X	X	<i>χ</i>	X	X.	× →	Recei	THE COLUMN	Standhine.	
Ö			BENFIELD	NFID O	2150 Gleise Ro	1622 MSN	Virgonconp	Fax: 47625888	rmation	Date Ty sampled	三七三不同	1													•	RON	Server of	25 pm	ž X
	<	ENZ KOS	STU GR	CIRSTN GREE	S, Lew	THE JUNGOOD A	Email: KG/000/jeldo environcono com	Phone: 49625444	Sample Information	Clent Sample ID	MWOZ	MINOS	MWIOI	MW102	MWIO	MW09	MWII	MW12	MWIOS	MWIDT	MW13		Burg A	DUMP B	CAT 22	Relinquished by (company):	T.	Acres 4	J
		Cilent:	Project Mgr. KIR	Sampler: K	Address: S.		Email:	Phone: Ch		Envirolab Sample ID	-	7	3	7	5	9	2	> (6	0)		77	13	1/4	MA	Relinquished	Print Name:	Date & Time: Signature:	

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

Control Cont			CHAIN OF CUSTODY - Client	PF.	SS	2	7	O	ient						
Envirolab Services			u	WIR	OLAE	SER	VICE	(A)							
The Tunners of the Comment The Comment				Glent P	roject N	me and	Mumber				Emir	Sah Con			T
Substitution Subs		SYFED		d	5.30	38.7					12 Act	lav St. Chat	Carond	MCM 2001	
Sunt P 15 (と) と (と) と ()		VFIELD		PO No.:									Thomas and the same	NSW, ZUO/	
THE LANGUAGN NSW 2251 are results required: The Language information and the results required: The Language information and the results required are results required are results required and the Language are required as a sample as		2,5090	ebelld	Envirola	b Servic	es Quote	₩0. :		4		Phone	02 9910 62	00		
Contact: Alleen Hie Contact: Alleen Hie	The sundright of	VSW 225	<u>)</u> _	Date ne	uits req	ired:					Fax:	02 9910 62	10		ecesta di Cara
14625444 Fax: 14615888 Secrete captes Secrete cap	Email: Kgreenheideenv	AKBINCOY	p.com	Or choo	ret-star	tand) 1	day / 2 (fay / 3 c	*		E L	ahie@envi	rolabse	Nices, com, au	accusa (Who
Client Sample Ito Date Type of sample Type of sam	Phone: 49625444	Fax: The	1 5888	Note: Info	m k5 m	ovance d'un	gent fum	round is re	quired -		Conta	t: Alcen Mi			
Clent Sample ID Date Type of earlple 25 25 25 25 25 25 25 2	Semple Infor	mattion					; (37)		Tests Rec	ultred				Commonte	3.
MWIS		Date	Type of sample		***************************************		- 1114	500	5000					Provide as much information about sample as you ca	- 5 =
MW19	. 60	N P-IVI	Lines	_	······································			7		1	1		1		
MW17			<u> </u>	Ì	1				4		·				1
MWAS MAILE M					$\frac{2}{x}$	X.	义	$\langle X \rangle$	V					PV	200
MINDS MINDS				X	$\frac{1}{x}$	4	X	\dagger		1				1	
MW106	T			1	*	\downarrow	1	\dagger	+		1			,	
MWIGO MWIGO				X)	X	*		\dagger	-	1	1				
MMS 120 MMS 125 MMS 12						1	ϕ	-	+	1	+		1		
MNG 15 M HILL MNG 15 M HILL MNG 15 M HILL MNG 15 M HILL MNG 15 M HILL MNG 15 M HILL Samples Received to Conform Martine MNG 10 M HILL Samples Received at Temperature Recieved at Transported by: Hand delivered Signature: MNG 10 M HILL Samples Received at Transported by: Hand delivered Miles MNG 10 M HILL Samples Received at Transported by: Hand delivered Miles MNG 10 M HILL Samples Received at Transported by: Hand delivered Miles MNG 10 M HILL Samples Received At Transported by: Hand delivered					K			+			+		1		T
MWICH WAS NITH XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ML120			X	X			\vdash	-		<u> </u>	+	1		T
MW 107 LINE Received by (company): 75K Samples Received: Cool or Ambia: 10 71 4 4:450 M Bate & Time: 11 714 10:00 Transported by: Hand delivered Active Cool of Signature: (17/14 10:00 Transported by: Hand delivered	MINIGS	ý.		X	X						_	-	Į.		
MW 07	MM	を天二		X	X			+		T				1000	-
ed by (company): FNVIRON Received by (company): 75K Samples Received: Cool or Ambient (dride in 10 11 14 4: 450 m Date & Time: 11 7/14 10:00 Transported by: Hand delivered / courier courier	38	-		X	R	V		$\langle \rangle$	V		<u> </u>				8
ed by Company): ENVIRON Received by (company): 72L/ Samples Received: Gool or Ambient (COL) (LES) GARDING Print Name: (COL) (COL) Temperature Recieved at: 10 31 4 4 450 M Transported by: Hand delivered for COL														י ומבאסמ	4
ed by Company): ENLIKON Received by (company): 72L Samples Received: Cool or Ambient LIKSIN GPED TIED Print Name: (COLO) Temperature Recieved at: Temperature Recieved at: Transported by: Hand delivered for Signature: (COLO)				\downarrow	+	_		+						erneministeriomos y lasty de sonetit (que la julio julio julio julio julio julio julio julio julio julio julio	П
18: 10 71 4 4 450 M Date & Time: 11 7 14 10.00 Transported by: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand delivered 1 COURT Transported By: Hand By: Hand By: Hand By: Hand By: Hand By: Hand By: Hand By: Hand By: Hand By: Hand By: Hand By: Hand By: Han	回	IKEN		Received	by (cor	npany):	101	1			Cammila				
18: 10 71 4 4: 450 m Date & Time: 11/7/14 10:00 Transported by: Hand delivered 10	れることのか	SOVE	9	Print Na	me:		5	11	Devo			mocenned; COO		int (drote one)	en en en en en en en en en en en en en e
Archar 20 Signature: (00	F 4 17 10 E	WS DIM		Date & T	îme:	11	11/2/	+	10,01	0	Transpor	are necessary	C alivered	(mappincable)	***************************************
The state of the s	7	0		Signatur	8		7	3						- Communication	

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 112983

Client:

Environ

PO Box 560 North Sydney NSW 2060

Attention: Kirsty Greenfield

Sample log in details:

Your Reference: AS130383
No. of samples: 26 Waters

Date samples received / completed instructions received 11/07/14, 15/07/1/ 11/07/14, 14/07/14

This report replaces the one dated 21/07/2014 due to changing of results between MW101 and MW102

(ELS -3 and -4) for vTRH and sTRH as requested by Kirsty due to labelling error.

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 21/07/14 / 22/07/14

Date of Preliminary Report: None Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Laboratory Manager

	1		T
VOCs in water	LINITTO	440000 40	440000 00
Our Reference: Your Reference	UNITS	112983-16 MW105	112983-26 MW107
Date Sampled		10/07/2014	11/07/2014
Type of sample		Water	Water
Date extracted		16/07/2014	16/07/2014
	-		
Date analysed		16/07/2014	16/07/2014
Dichlorodifluoromethane	μg/L	<10	<10
Chloromethane	μg/L	<10	<10
Vinyl Chloride	μg/L	<10	<10
Bromomethane	μg/L	<10	<10
Chloroethane	μg/L	<10	<10
Trichlorofluoromethane	μg/L	<10	<10
1,1-Dichloroethene	μg/L	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1
1,1-dichloroethane	μg/L	<1	<1
Cis-1,2-dichloroethene	μg/L	1	<1
Bromochloromethane	μg/L	<1	<1
Chloroform	μg/L	5	<1
2,2-dichloropropane	μg/L	<1	<1
1,2-dichloroethane	μg/L	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1
1,1-dichloropropene	μg/L	<1	<1
Cyclohexane	μg/L	<1	<1
Carbon tetrachloride	μg/L	<1	<1
Benzene	μg/L	1	<1
Dibromomethane	μg/L	- <1	<1
		<1	
1,2-dichloropropane	μg/L		<1
Trichloroethene	μg/L	<1	<1
Bromodichloromethane	μg/L	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1
Toluene	μg/L	<1	<1
1,3-dichloropropane	μg/L	<1	<1
Dibromochloromethane	μg/L	<1	<1
1,2-dibromoethane	μg/L	<1	<1
Tetrachloroethene	μg/L	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1
Chlorobenzene	μg/L	150	<1
Ethylbenzene	μg/L	<1	<1
Bromoform	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
Styrene	μg/L	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1
o-xylene	μg/L	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1
1,2,5 (1011010)10)100	P9/-		<u> </u>

VOCs in water			
Our Reference:	UNITS	112983-16	112983-26
Your Reference		MW105	MW107
Date Sampled		10/07/2014	11/07/2014
Type of sample		Water	Water
Isopropylbenzene	μg/L	<1	<1
Bromobenzene	μg/L	<1	<1
n-propyl benzene	μg/L	<1	<1
2-chlorotoluene	μg/L	<1	<1
4-chlorotoluene	μg/L	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1
Tert-butyl benzene	μg/L	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1
Sec-butyl benzene	μg/L	<1	<1
1,4-dichlorobenzene	μg/L	9	<1
4-isopropyl toluene	μg/L	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1
n-butyl benzene	μg/L	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1
Hexachlorobutadiene	μg/L	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	101	97
Surrogate toluene-d8	%	88	86
Surrogate 4-BFB	%	103	99

vTRH in Water (C6-C9) NEPM						
Our Reference:	UNITS	112983-1	112983-2	112983-3	112983-4	112983-13
Your Reference		MW07	MW08	MW101	MW102	DUPA
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
TRHC6 - C9	μg/L	<10	<10	<10	18	22
TRHC6 - C10	μg/L	<10	<10	<10	18	22
Surrogate Dibromofluoromethane	%	100	102	102	100	100
Surrogate toluene-d8	%	100	99	100	99	97
Surrogate 4-BFB	%	96	97	97	98	98

vTRH in Water (C6-C9) NEPM			
Our Reference:	UNITS	112983-16	112983-20
Your Reference		MW105	MW16
Date Sampled		10/07/2014	10/07/2014
Type of sample		Water	Water
Date extracted	-	16/07/2014	16/07/2014
Date analysed	-	16/07/2014	16/07/2014
TRHC6 - C9	μg/L	240	<10
TRHC6 - C10	μg/L	240	<10
Surrogate Dibromofluoromethane	%	101	101
Surrogate toluene-d8	%	88	101
Surrogate 4-BFB	%	103	99

svTRH (C10-C40) in Water						
Our Reference:	UNITS	112983-1	112983-2	112983-3	112983-4	112983-13
Your Reference		MW07	MW08	MW101	MW102	DUPA
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
TRHC10 - C14	μg/L	<50	<50	<50	<50	<50
TRHC 15 - C28	μg/L	<100	<100	<100	<100	<100
TRHC29 - C36	μg/L	<100	<100	<100	<100	<100
TRH>C10 - C16	μg/L	<50	<50	<50	<50	<50
TRH>C16 - C34	μg/L	<100	<100	<100	<100	<100
TRH>C34 - C40	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	123	105	101	113	125

svTRH (C10-C40) in Water			
,	LINITO	440000 40	440000 00
Our Reference:	UNITS	112983-16	112983-20
Your Reference		MW105	MW16
Date Sampled		10/07/2014	10/07/2014
Type of sample		Water	Water
Date extracted	-	16/07/2014	16/07/2014
Date analysed	-	18/07/2014	17/07/2014
TRHC10 - C14	μg/L	180	<50
TRHC 15 - C28	μg/L	1,400	<100
TRHC29 - C36	μg/L	<100	<100
TRH>C10 - C16	μg/L	300	<50
TRH>C16 - C34	μg/L	1,200	<100
TRH>C34 - C40	μg/L	<100	<100
Surrogate o-Terphenyl	%	137	92

PAHs in Water - Low Level						
Our Reference:	UNITS	112983-8	112983-9	112983-10	112983-11	112983-14
Your Reference		MW12	MW103	MW104	MW13	DUPB
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/201	16/07/201	16/07/201	16/07/201	16/07/201
Naphthalene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	0.1	<0.1	0.1
Pyrene	μg/L	<0.1	<0.1	0.2	<0.1	0.2
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	μg/L	<0.2	<0.2	<0.2	<0.2	0.3
Benzo(a)pyrene	μg/L	<0.1	<0.1	0.1	<0.1	0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	0.1	<0.1	0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	0.1	<0.1	0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	NIL(+)VE	NIL(+)VE	0.77	NIL(+)VE	0.97
Surrogate p-Terphenyl-d14	%	107	103	80	103	80

PAHs in Water - Low Level					
Our Reference:	UNITS	112983-15	112983-17	112983-20	112983-21
Your Reference		MW18	MW17	MW16	MW106
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water
Date extracted	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/201	16/07/201	16/07/201	16/07/201
Naphthalene	μg/L	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	μg/L	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	92	86	112	101

	Ī	I	
SVOC's in water	LINITO	442002 40	442002.20
Our Reference: Your Reference	UNITS	112983-16 MW105	112983-26 MW107
Date Sampled		10/07/2014	11/07/2014
Type of sample		Water	Water
Date extracted	_	16/07/2014	16/07/2014
Date analysed	_	19/07/2014	19/07/2014
Phenol	μg/L	<10	<10
Bis (2-chloroethyl) ether	μg/L	<10	<10
2-Chlorophenol	μg/L	<10	<10
1,3-Dichlorobenzene	μg/L	<10	<10
1,4-Dichlorobenzene	μg/L	<10	<10
2-Methylphenol	μg/L	<10	<10
1,2-Dichlorobenzene	μg/L	<10	<10
bis-(2-Chloroisopropyl) ether	μg/L	<10	<10
3/4-Methylphenol	μg/L	<20	<20
N-nitrosodi-n-propylamine	μg/L	<10	<10
Hexachloroethane	μg/L	<10	<10
Nitrobenzene	μg/L	<10	<10
Isophorone	μg/L	<10	<10
2,4-Dimethylphenol	μg/L	<10	<10
2-Nitrophenol	μg/L	<10	<10
bis (2-Chloroethoxy) methane	μg/L	<10	<10
2,4-Dichlorophenol	μg/L	<10	<10
1,2,4-Trichlorobenzene	μg/L	<10	<10
Naphthalene	μg/L	<10	<10
4-Chloroaniline	μg/L	<10	<10
Hexachlorobutadiene	μg/L	<10	<10
2-Methylnaphthalene	μg/L	<10	<10
Hexachlorocyclopentadiene	μg/L	<10	<10
2,4,6-Trichlorophenol	μg/L	<10	<10
2,4,5-Trichlorophenol	μg/L	<10	<10
2-Chloronaphthalene	μg/L	<10	<10
2-Nitroaniline	μg/L	<10	<10
Dimethyl phthalate	μg/L	<10	<10
2,6-Dinitrotoluene	μg/L	<10	<10
Acenaphthylene	μg/L	<10	<10
3-Nitroaniline	μg/L	<10	<10
Acenaphthene	μg/L	<10	<10
2,4-Dinitrophenol	μg/L	<100	<100
4-Nitrophenol	μg/L	<100	<100
Dibenzofuran	μg/L	<10	<10
Diethylphthalate	μg/L	<10	<10
4-Chlorophenylphenylether	μg/L	<10	<10
4-Nitroaniline	μg/L	<10	<10
Fluorene	μg/L	<10	<10
2-methyl-4,6-dinitrophenol	μg/L	<100	<100
Azobenzene	μg/L	<10	<10

SVOC's in water Our Reference: Your Reference	UNITS	112983-16	
	UNITS		112983-26
Tour Reference		MW105	MW107
Date Sampled		10/07/2014	11/07/2014
Type of sample		Water	Water
4-Bromophenylphenylether	μg/L	<10	<10
Hexachlorobenzene	μg/L	<10	<10
Pentachlorophenol	μg/L	<100	<100
Phenanthrene	μg/L	<10	<10
Anthracene	μg/L	<10	<10
Carbazole	μg/L	<10	<10
Di-n-butylphthalate	μg/L	<10	<10
Fluoranthene	μg/L	<10	<10
Pyrene	μg/L	<10	<10
Butylbenzylphthalate	μg/L	<10	<10
Bis(2-ethylhexyl) phthalate	μg/L	<10	<10
Benzo(a)anthracene	μg/L	<10	<10
Chrysene	μg/L	<10	<10
Di-n-octylphthalate	μg/L	<10	<10
Benzo(b)fluoranthene	μg/L	<10	<10
Benzo(k)fluoranthene	μg/L	<10	<10
Benzo(a)pyrene	μg/L	<10	<10
Indeno(1,2,3-c,d)pyrene	μg/L	<10	<10
Dibenzo(a,h)anthracene	μg/L	<10	<10
Benzo(g,h,i)perylene	μg/L	<10	<10
Ethylmethanesulfonate	μg/L	<10	<10
Aniline	μg/L	<10	<10
Pentachloroethane	μg/L	<10	<10
Benzyl alcohol	μg/L	<10	<10
Acetophenone	μg/L	<10	<10
N-nitrosomorpholine	μg/L	<10	<10
N-nitrosopiperidine	μg/L	<10	<10
2,6-Dichlorophenol	μg/L	<10	<10
Hexachloropropene-1	μg/L	<10	<10
N-nitroso-n-butylamine	μg/L	<10	<10
Safrole	μg/L	<10	<10
1,2,4,5-Tetrachlorobenzene	μg/L	<10	<10
Trans-iso-safrole	μg/L	<10	<10
1,3-Dinitrobenzene	μg/L	<10	<10
Pentachlorobenzene	μg/L	<10	<10
1-Naphthylamine	μg/L	<10	<10
2,3,4,6-Tetrachlorophenol	μg/L	<10	<10
2-Naphthylamine	μg/L	<10	<10
5-Nitro-o-toluidine	μg/L	<10	<10
Diphenylamine	μg/L	<10	<10
Phenacetin	μg/L	<10	<10
Pentachloronitrobenzene	μg/L	<10	<10
Dinoseb	μg/L	<10	<10

	T		
SVOC's in water	LINITTO	440000 40	440000 00
Our Reference: Your Reference	UNITS	112983-16 MW105	112983-26 MW107
Date Sampled		10/07/2014	11/07/2014
Type of sample		Water	Water
Methapyrilene	μg/L	<10	<10
p-Dimethylaminoazobenzene	μg/L	<10	<10
2-Acetylaminofluorene	μg/L	<10	<10
7,12-Dimethylbenz(a)anthracene	μg/L	<10	<10
3-Methylcholanthrene	μg/L	<10	<10
a-BHC	μg/L	<10	<10
b-BHC	μg/L	<10	<10
g-BHC	μg/L	<10	<10
d-BHC	μg/L	<10	<10
Heptachlor	μg/L	<10	<10
Aldrin	μg/L	<10	<10
Heptachlor Epoxide	μg/L	<10	<10
g-Chlordane	μg/L	<10	<10
a-Chlordane	μg/L	<10	<10
Endosulfan I	μg/L	<10	<10
p,p'-DDE	μg/L	<10	<10
Dieldrin	μg/L	<10	<10
Endrin	μg/L	<10	<10
p,p'-DDD	μg/L	<10	<10
Endosulfan II	μg/L	<10	<10
Endrin Aldehyde	μg/L	<10	<10
p,p'-DDT	μg/L	<10	<10
Endosulfan Sulphate	μg/L	<10	<10
Surrogate 2-fluorophenol	%	57	53
Surrogate Phenol-de	%	42	35
Surrogate Nitrobenzene-ds	%	91	87
Surrogate 2-fluorobiphenyl	%	91	89
Surrogate 2,4,6-Tribromophenol	%	107	88
Surrogate p-Terphenyl-d14	%	108	102

HM in water - dissolved Our Reference: Your Reference Date Sampled Type of sample	UNITS	112983-1 MW07 07/07/2014 Water	112983-2 MW08 07/07/2014 Water	112983-3 MW101 07/07/2014 Water	112983-4 MW102 07/07/2014 Water	112983-5 MW10 07/07/2014 Water
Date prepared	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Arsenic-Dissolved	μg/L	6	<1	2	1	3
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	1	<1	<1	3
Copper-Dissolved	μg/L	<1	<1	4	2	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	2	<1	9	2	24
Zinc-Dissolved	μg/L	3	<1	10	4	9
Aluminium-Dissolved	μg/L	<10	1,200	<10	<10	2,900

HM in water - dissolved						
Our Reference:	UNITS	112983-6	112983-7	112983-8	112983-9	112983-10
Your Reference		MW09	MW11	MW12	MW103	MW104
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Arsenic-Dissolved	μg/L	2	1	<1	1	2
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	0.2	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	6
Copper-Dissolved	μg/L	1	2	<1	<1	3
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	14	6	15	18	5
Zinc-Dissolved	μg/L	1	2	8	92	8
Aluminium-Dissolved	μg/L	30	390	<10	7,700	1,300

HM in water - dissolved						
Our Reference:	UNITS	112983-11	112983-12	112983-13	112983-14	112983-15
Your Reference		MW13	MW14	DUPA	DUPB	MW18
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Arsenic-Dissolved	μg/L	2	2	3	1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	6	<1	11	6	<1
Copper-Dissolved	μg/L	<1	3	3	3	<1
Lead-Dissolved	μg/L	<1	<1	4	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	7	6	5	<1
Zinc-Dissolved	μg/L	2	7	14	8	4
Aluminium-Dissolved	μg/L	2,500	<10	8,900	1,300	750
			•			1
HM in water - dissolved						
Our Reference:	UNITS	112983-16	112983-17	112983-18	112983-19	112983-20
	1		1			

HM in water - dissolved						
Our Reference:	UNITS	112983-16	112983-17	112983-18	112983-19	112983-20
Your Reference		MW105	MW17	MWA	MWB	MW16
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Arsenic-Dissolved	μg/L	1	12	1	5	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	0.2	0.2	<0.1
Chromium-Dissolved	μg/L	2	4	1	2	<1
Copper-Dissolved	μg/L	1	1	<1	3	2
Lead-Dissolved	μg/L	<1	1	1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	4	8	2	7	<1
Zinc-Dissolved	μg/L	4	6	64	13	1
Aluminium-Dissolved	μg/L	20	3,800	630	1,400	<10

HM in water - dissolved Our Reference: Your Reference Date Sampled Type of sample	UNITS	112983-21 MW106 10/07/2014 Water	112983-22 MW19 10/07/2014 Water	112983-23 MW20 10/07/2014 Water	112983-24 MW06 10/07/2014 Water	112983-25 MW15 11/07/2014 Water
Date prepared	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Arsenic-Dissolved	μg/L	2	8	2	1	2
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	1	2	<1	<1
Copper-Dissolved	μg/L	5	<1	<1	1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	2	7	4	20	9
Zinc-Dissolved	μg/L	15	2	6	16	2
Aluminium-Dissolved	μg/L	50	680	1,500	180	180

HM in water - dissolved		
Our Reference:	UNITS	112983-26
Your Reference		MW107
Date Sampled		11/07/2014
Type of sample		Water
Date prepared	-	16/07/2014
Date analysed	-	16/07/2014
Arsenic-Dissolved	μg/L	<1
Cadmium-Dissolved	μg/L	<0.1
Chromium-Dissolved	μg/L	2
Copper-Dissolved	μg/L	<1
Lead-Dissolved	μg/L	<1
Mercury-Dissolved	μg/L	<0.05
Nickel-Dissolved	μg/L	2
Zinc-Dissolved	μg/L	7
Aluminium-Dissolved	μg/L	5,000

	T	1	1	Γ	T	
Miscellaneous Inorganics						
Our Reference:	UNITS	112983-1	112983-2	112983-3	112983-4	112983-5
Your Reference		MW07	MW08	MW101	MW102	MW10
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Date analysed	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Fluoride, F	mg/L	1.4	6.7	0.46	3.2	2.1
		<u> </u>	<u> </u>		I	
Miscellaneous Inorganics						
Our Reference:	UNITS	112983-6	112983-7	112983-8	112983-9	112983-10
Your Reference		MW09	MW11	MW12	MW103	MW104
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Date analysed	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Fluoride, F	mg/L	0.56	8.3	0.22	12	13
Miscellaneous Inorganics						
Our Reference:	UNITS	112983-11	112983-12	112983-13	112983-14	112983-15
Your Reference		MW13	MW14	DUPA	DUPB	MW18
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Date analysed	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Fluoride, F	mg/L	40	0.85	3.4	14	17
		<u> </u>	<u> </u>		I	
Miscellaneous Inorganics						
Our Reference:	UNITS	112983-16	112983-17	112983-18	112983-19	112983-20
Your Reference		MW105	MW17	MWA	MWB	MW16
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Date analysed	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Fluoride, F	mg/L	1.1	1.1	8.2	12	2.3
Miscellaneous Inorganics						
Our Reference:	UNITS	112983-21	112983-22	112983-23	112983-24	112983-25
Your Reference		MW106	MW19	MW20	MW06	MW15
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014	11/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Date analysed	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Fluoride, F	mg/L	7.4	0.37	0.67	0.22	2.7
		1	1		- :	

Miscellaneous Inorganics		
Our Reference:	UNITS	112983-26
Your Reference		MW107
Date Sampled		11/07/2014
Type of sample		Water
Date prepared	-	17/07/2014
Date analysed	-	17/07/2014
Fluoride, F	mg/L	10

Method ID	Methodology Summary
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA 22nd ED, 4500-F-C.

Client Reference: AS130383								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II % RPD		,
Date extracted	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
Date analysed	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/0/7/2014
Dichlorodifluoromethane	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Chloromethane	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Bromomethane	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Chloroethane	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Trans-1,2- dichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	83%
1,1-dichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Cis-1,2-dichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromochloromethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Chloroform	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	84%
2,2-dichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	84%
1,1,1-trichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	83%
1,1-dichloropropene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Cyclohexane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Carbon tetrachloride	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Dibromomethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Trichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	91%
Bromodichloromethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	86%
trans-1,3- dichloropropene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Toluene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Dibromochloromethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	88%
1,2-dibromoethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Tetrachloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	78%
1,1,1,2- tetrachloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Chlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromoform	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
m+p-xylene	μg/L	2	Org-013	<2	[NT]	[NT]	[NR]	[NR]
Styrene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1,2,2- tetrachloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
o-xylene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]

		Cili	ent Reference	e: A	S130383			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II %RPD		
1,2,3-trichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Isopropylbenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Tert-butyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Sec-butyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluoromethane	%		Org-013	95	[NT]	[NT]	LCS-W1	93%
Surrogate toluene-d8	%		Org-013	89	[NT]	[NT]	LCS-W1	87%
Surrogate 4-BFB	%		Org-013	98	[NT]	[NT]	LCS-W1	104%

		Cile	nt Referenc	e: A	S130383			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH in Water (C6-C9) NEPM						Base II Duplicate II %RPD		,
Date extracted	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
Date analysed	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
TRHC6 - C9	μg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	96%
TRHC6 - C10	μg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	96%
Surrogate Dibromofluoromethane	%		Org-013	93	[NT]	[NT]	LCS-W1	103%
Surrogate toluene-d8	%		Org-013	87	[NT]	[NT]	LCS-W1	87%
Surrogate 4-BFB	%		Org-013	104	[NT]	[NT]	LCS-W1	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH(C10-C40)in Water						Base II Duplicate II %RPD		
Date extracted	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
Date analysed	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
TRHC10 - C14	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	100%
TRHC 15 - C28	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	102%
TRHC29 - C36	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	79%
TRH>C10 - C16	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	100%
TRH>C16 - C34	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	102%
TRH>C34 - C40	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	79%
Surrogate o-Terphenyl	%		Org-003	125	[NT]	[NT]	LCS-W1	88%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Water - Low Level					Sm#	Base II Duplicate II %RPD		Recovery
Date extracted	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
Date analysed	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
Naphthalene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	83%
Acenaphthylene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	86%
Phenanthrene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	86%
Anthracene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	85%
Pyrene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	85%

		Cile	nt Reference	e. A	S130383			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water - Low Level						Base II Duplicate II %RPD		,
Benzo(a)anthracene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	84%
Benzo(b+k)fluoranthene	μg/L	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	95%
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	87	[NT]	[NT]	LCS-W1	113%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
SVOC's in water					Sm#	Base II Duplicate II %RPD		Recovery
Date extracted	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
Date analysed	-			19/07/2 014	[NT]	[NT]	LCS-W1	19/07/2014
Phenol	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	31%
Bis (2-chloroethyl) ether	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-Chlorophenol	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	82%
1,3-Dichlorobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
1,4-Dichlorobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	53%
2-Methylphenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
1,2-Dichlorobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
bis-(2-Chloroisopropyl) ether	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
3/4-Methylphenol	μg/L	20	Org-012	<20	[NT]	[NT]	[NR]	[NR]
N-nitrosodi-n- propylamine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Hexachloroethane	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Nitrobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Isophorone	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2,4-Dimethylphenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-Nitrophenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
bis (2-Chloroethoxy) methane	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2,4-Dichlorophenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
1,2,4-Trichlorobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Naphthalene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
4-Chloroaniline	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-Methylnaphthalene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]

		Cile	nt Referenc	e: A	S130383			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
SVOC's in water						Base II Duplicate II % RPD		,
Hexachlorocyclopentadi ene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2,4,6-Trichlorophenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2,4,5-Trichlorophenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-Chloronaphthalene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-Nitroaniline	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Dimethyl phthalate	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	118%
2,6-Dinitrotoluene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Acenaphthylene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
3-Nitroaniline	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Acenaphthene	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	60%
2,4-Dinitrophenol	μg/L	100	Org-012	<100	[NT]	[NT]	[NR]	[NR]
4-Nitrophenol	μg/L	100	Org-012	<100	[NT]	[NT]	LCS-W1	31%
Dibenzofuran	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Diethylphthalate	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	66%
4- Chlorophenylphenylether	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
4-Nitroaniline	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Fluorene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-methyl-4,6- dinitrophenol	μg/L	100	Org-012	<100	[NT]	[NT]	[NR]	[NR]
Azobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
4-	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Bromophenylphenylether								
Hexachlorobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Pentachlorophenol	μg/L	100	Org-012	<100	[NT]	[NT]	[NR]	[NR]
Phenanthrene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Anthracene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Carbazole	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Di-n-butylphthalate	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Fluoranthene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Pyrene	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	68%
Butylbenzylphthalate	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Bis(2-ethylhexyl) phthalate	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Benzo(a)anthracene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Chrysene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Di-n-octylphthalate	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Benzo(b)fluoranthene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Benzo(k)fluoranthene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Ethylmethanesulfonate	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Aniline	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Pentachloroethane	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]

			nt Referenc	e. A.	S130383			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
SVOC's in water					OI III	Base II Duplicate II %RPD		Necovery
Benzyl alcohol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Acetophenone	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
N-nitrosomorpholine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
N-nitrosopiperidine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2,6-Dichlorophenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Hexachloropropene-1	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
N-nitroso-n-butylamine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Safrole	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
1,2,4,5- Tetrachlorobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Trans-iso-safrole	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
1,3-Dinitrobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Pentachlorobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
1-Naphthylamine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2,3,4,6- Tetrachlorophenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-Naphthylamine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
5-Nitro-o-toluidine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Diphenylamine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Phenacetin	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Pentachloronitrobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Dinoseb	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Methapyrilene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
p-	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Dimethylaminoazobenze ne								
2-Acetylaminofluorene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
7,12-Dimethylbenz(a) anthracene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
3-Methylcholanthrene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
a-BHC	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
b-BHC	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
g-BHC	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
d-BHC	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Heptachlor	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Aldrin	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	97%
Heptachlor Epoxide	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
g-Chlordane	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
a-Chlordane	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Endosulfan I	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
p,p'-DDE	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Dieldrin	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	87%
Endrin	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
p,p'-DDD	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Endosulfan II	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
p,p'-DDT	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]

		Clie	nt Referenc	e: A	S130383			
QUALITY CONTROL SVOC's in water	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Endosulfan Sulphate	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Surrogate 2-fluorophenol	%		Org-012	71	[NT]	[NT]	LCS-W1	63%
Surrogate Phenol-de	%		Org-012	55	[NT]	[NT]	LCS-W1	48%
Surrogate Nitrobenzene-ds	%		Org-012	86	[NT]	[NT]	LCS-W1	83%
Surrogate 2- fluorobiphenyl	%		Org-012	92	[NT]	[NT]	LCS-W1	92%
Surrogate 2,4,6- Tribromophenol	%		Org-012	86	[NT]	[NT]	LCS-W1	106%
Surrogate p-Terphenyl- d ₁₄	%		Org-012	105	[NT]	[NT]	LCS-W1	110%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II %RPD		
Date prepared	-			16/07/2 014	112983-3	16/07/2014 16/07/2014	LCS-W2	16/07/2014
Date analysed	-			16/07/2 014	112983-3	16/07/2014 16/07/2014	LCS-W2	16/07/2014
Arsenic-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	112983-3	2 2 RPD:0	LCS-W2	110%
Cadmium-Dissolved	μg/L	0.1	Metals-022 ICP-MS	<0.1	112983-3	<0.1 <0.1	LCS-W2	102%
Chromium-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	112983-3	<1 <1	LCS-W2	109%
Copper-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	112983-3	4 4 RPD:0	LCS-W2	107%
Lead-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	112983-3	<1 <1	LCS-W2	102%
Mercury-Dissolved	μg/L	0.05	Metals-021 CV-AAS	<0.05	112983-3	<0.05 [N/T]	LCS-W2	100%
Nickel-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	112983-3	9 9 RPD:0	LCS-W2	111%
Zinc-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	112983-3	10 9 RPD:11	LCS-W2	111%
Aluminium-Dissolved	μg/L	10	Metals-022 ICP-MS	<10	112983-3	<10 <10	LCS-W2	112%

		Cli	ent Referenc	e: A	S130383			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics						Base II Duplicate II %RPD		
Date prepared	-			17/07/2 014	112983-1	17/07/2014 17/07/2014	LCS-W1	17/07/201
Date analysed	-			17/07/2 014	112983-1	17/07/2014 17/07/2014	LCS-W1	17/07/201
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	112983-1	1.4 1.4 RPD:0	LCS-W1	102%
QUALITYCONTROL	UNITS	3	Dup. Sm#		Duplicate	Spike Sm#	Spike % Reco	overy
HM in water - dissolved				Base+I	Duplicate+%RP	D		
Date prepared	-		112983-13	16/07/2	014 16/07/201	4 LCS-3	16/07/201	4
Date analysed	-		112983-13	16/07/2	014 16/07/201	4 LCS-3	16/07/201	4
Arsenic-Dissolved	μg/L		112983-13	3	3 RPD:0	LCS-3	99%	
Cadmium-Dissolved	μg/L		112983-13		<0.1 <0.1	LCS-3	105%	
Chromium-Dissolved	μg/L		112983-13	11	11 RPD:0	LCS-3	97%	
Copper-Dissolved	μg/L		112983-13	3	3 RPD:0	LCS-3	96%	
Lead-Dissolved	μg/L		112983-13	4	4 RPD:0	LCS-3	104%	
Mercury-Dissolved	μg/L		112983-13	<	0.05 [N/T]	LCS-3	108%	
Nickel-Dissolved	μg/L		112983-13	6	5 RPD: 18	LCS-3	99%	
Zinc-Dissolved	μg/L		112983-13	14	15 RPD:7	LCS-3	99%	
Aluminium-Dissolved	μg/L		112983-13	8900	9000 RPD:1	LCS-3	96%	
QUALITYCONTROL	UNITS	3	Dup.Sm#		Duplicate	Spike Sm#	Spike % Reco	overy
Miscellaneous Inorganics				Base+I	Duplicate + %RP	'D		
Date prepared	-		112983-11	17/07/2	014 17/07/201	4 112983-2	17/07/201	4
Date analysed	-		112983-11	17/07/2	014 17/07/201	4 112983-2	17/07/201	4
Fluoride, F	mg/L		112983-11	40	39 RPD:3	112983-2	89%	
QUALITY CONTROL HM in water - dissolved	UNITS	8	Dup.Sm#	Base+I	Duplicate Duplicate+%RP	Spike Sm#	Spike % Reco	overy
Date prepared	-		112983-23	16/07/2	014 16/07/201	4 112983-4	16/07/201	4
Date analysed	-		112983-23				16/07/201	
Arsenic-Dissolved	μg/L		112983-23		 2 RPD:0	112983-4	96%	
Cadmium-Dissolved	μg/L		112983-23		<0.1 <0.1	112983-4	102%	
Chromium-Dissolved	μg/L		112983-23	2	2 RPD:0	112983-4	93%	
Copper-Dissolved	μg/L		112983-23		<1 <1	112983-4	91%	
Lead-Dissolved	μg/L		112983-23		<1 <1	112983-4	102%	
Nickel-Dissolved	μg/L		112983-23	4	4 RPD:0	112983-4	94%	
Zinc-Dissolved	μg/L		112983-23	6	6 RPD:0	112983-4	97%	
Aluminium-Dissolved	μg/L		112983-23	1500	1400 RPD:7	112983-4	96%	

		Client Reference	ce: AS130383		
QUALITY CONTROL Miscellaneous Inorganics	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	LCS-W2	17/07/2014
Date analysed	-	[NT]	[NT]	LCS-W2	17/07/2014
Fluoride, F	mg/L	[NT]	[NT]	LCS-W2	104%
QUALITY CONTROL HM in water - dissolved	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	112983-1	16/07/2014 16/07/2014	112983-14	16/07/2014
Date analysed	-	112983-1	16/07/2014 16/07/2014	112983-14	16/07/2014
Arsenic-Dissolved	μg/L	112983-1	6 [N/T]	112983-14	97%
Cadmium-Dissolved	μg/L	112983-1	<0.1 [N/T]	112983-14	100%
Chromium-Dissolved	μg/L	112983-1	<1 [N/T]	112983-14	91%
Copper-Dissolved	μg/L	112983-1	<1 [N/T]	112983-14	87%
Lead-Dissolved	μg/L	112983-1	<1 [N/T]	112983-14	100%
Mercury-Dissolved	μg/L	112983-1	<0.05 <0.05	[NR]	[NR]
Nickel-Dissolved	μg/L	112983-1	2 [N/T]	112983-14	90%
Zinc-Dissolved	μg/L	112983-1	3 [N/T]	112983-14	94%
Aluminium-Dissolved	μg/L	112983-1	<10 [N/T]	112983-14	99%
QUALITY CONTROL Miscellaneous Inorganics	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	112983-22	17/07/2014
Date analysed	-	[NT]	[NT]	112983-22	17/07/2014
Fluoride, F	mg/L	[NT]	[NT]	112983-22	97%
QUALITY CONTROL HM in water - dissolved	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	112983-10	16/07/2014 16/07/2014	112983-2	16/07/2014
Date analysed	-	112983-10	16/07/2014 16/07/2014	112983-2	16/07/2014
Mercury-Dissolved	μg/L	112983-10	<0.05 <0.05	112983-2	104%
QUALITY CONTROL HM in water - dissolved	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	112983-20	16/07/2014 16/07/2014	112983-21	16/07/2014
Date analysed	-	112983-20	16/07/2014 16/07/2014	112983-21	16/07/2014
Mercury-Dissolved	μg/L	112983-20	<0.05 <0.05	112983-21	104%

Report Comments:

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 112983 Revision No: R 01 Page 26 of 27

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 112983 Page 27 of 27 Revision No: R 01

The PANISON GROWNERS CONTROLLED Context Project No. 2005 The Parison			J	HAIN	CHAIN OF CUS	TODY - Client	- Clie	ᆂ			And The Park	<u> </u>
Compact Comp	1		,	面	IVIROLAB	SERVICE	Ś				A LINATION OF THE PROPERTY OF	
Control of Custory Clear Control of Custory	ient:		NFIBLO		Cleant Project Nam ASI30	ie and Number 383			Envirolab	Services	Loca more	-
Pubme; 02 9910 6200 Pubme; 02 9910 6200 Pubme; 02 9910 6200 Pubme; 02 9910 6201	mpler: k	CIRSTN GREET	所回り		PO No.:						, NOTT, 2007	
Part 1991 1994 1991 1994 1995 1994	(dress;	35	2006 2006	oe Rd	Envirolab Services	Quote No. :			Phone; 02 99	10 6200		
Part of the part	2/2	2 (2007)	2V CEL		Date results requi	ÿ/			Fax: 02.9	310 6201		
Chent Sample 10 Dates Chent Sample 20 Dates Chent Sample 10 Dates		THE STATE OF THE S	יונטענטע	C COLU	Or choose standa	1 day / 2	day / 3 day		E-mailt ahie	Genvirolab	vervices.com.au	
Clent Simple Information Oracle Continuental	Prone: C			5888	Note: Inform bio in 30 19 Surcherge applies	snce if urgent tuma	round is required	_1	Contact: Aile	Z Z		
Clear Sample 10 Leate		Stemple Infor	nation				Tests	Recoined				<u> </u>
MINUTE TO STATE THE LABORATE TO STATE THE MATTER TO STATE THE MATTER TO STATE THE MATTER TO STATE THE MATTER T	Envirolat				wnu					_		
M. W.O.3	OI sydme			ype of sample	m'n	Hd				SUPH	·····	
Minutes	F		_1=	900	V.	L.						
MW101	. 7			単一で	XXX	X		_			I 🔧	1
MM/102	1 ~	WWW.			V V V	X		, i	montal Divisi	 	Matall Samul	١ ৱ
MW10	4	MINIO			タタタ	X		Enviro	nmetical Divisi Sydnev	5	4 I	
MW02 MW12 MW12 MW12 MW12 MW12 MW12 MW13	7	MWIO							Mork Order			
MW112	9	Mwog							A A A E D C	_		
MW103	4	MMII						ij	147000	_ _		
MWINDS MINISTER CONTROL OF The Print Name: DUP A DUP B	م	MW12			XXX	X	1	- T -]		
Minutes Minu	6	MWI03			XXX	X						
M. M. M. M. M. M. M. M. M. M. M. M. M.	9 3	TOINING			XXX	X						-
DULY BY DULY BY COUNTY BY COUN	12	25.2			XXX	X				≡		_
DUD B1	12	O TO TO			A V	X,		Teleph	Te: +01-2-0/04	2000		
HOW B1 Selectived by (company): ENVIRON EX Received by (company): Z(S Samples Received; Cool or Ambient (circle one) Temperature Recieved at: (if applicable) Transported by: Hand delivered I counter Page No: 1302-Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1. Page 1 of 1.	74/	Owo B				X	+	+		_		r - 1
ad by (company): ENVIRON EX Received by (company): ACS Samples Raceived: Cool or Ambient (dirde one) E. LIEST GREEN COOL STATES OF A COOL OF Ambient (dirde one) E. LOPILLY LIESTON MITH of Chaire & Time: 1/7/4 (0.00 Transported by: Hand delivered outrier F. U. COOL OF Ambient (dirde one) Transported by: Hand delivered Courier Page No: Page No: 1.302-Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.	麻谷	a	•	•		1		-			1	
10 7 14 4 15 200 14 10 14 10 14 15 15 16 16 16 16 16 16	dinguishe	d by (company): EN	KON	EC	Received by (come	į	١			XI :	3	acs forsa
ACCUSTOCK (State of Control of Co	int Name:	ない。	SIN RIGH	1 1 1	Print Name:	4		lang.	Temperature Ka	id: Cool or Ami	7	analysis
n: 302 - Chair of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1. Page No.	tte & Time	P	Comment of the control of the contro	誀.	Onto & Time: /	1/6/16	10)	Transported by:	Hand delivere	d / courier	- as 000pg
Recent by: From A 11/21		カスカング	197	20	Signature:	下 5				,	Page No.	
, 27 2	Form:	: 302 - Chain of Custody-Client,	Issued 14/02/08, '	(/ Version 3, Page 1	q 1,		Rea	المراجعة	The state of the s	N	. [14	
	•						-	•	\$	-	for	

CERTIFICATE OF ANALYSIS

Work Order : **ES1415361** Page : 1 of 5

Client : **ENVIRON** Laboratory : Environmental Division Sydney

Contact : MS KIRSTY GREENFIELD Contact : Client Services

Address : PO Box 435 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

THE JUNCTION NSW 2291

 E-mail
 : kgreenfield@environcorp.com
 E-mail
 : sydney@alsglobal.com

 Telephone
 : +61 02 4962 5444
 Telephone
 : +61-2-8784 8555

 Telephone
 : +61 02 4962 5444
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 4962 5888
 Facsimile
 : +61-2-8784 8500

Project : AS130383 QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 14-JUL-2014

 Sampler
 : KG
 Issue Date
 : 21-JUL-2014

Site : ----

No. of samples received : 1

Quote number : SY/433/13

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Organics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

 Page
 : 2 of 5

 Work Order
 : ES1415361

 Client
 : ENVIRON

 Project
 - AS130383

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

 Page
 : 3 of 5

 Work Order
 : ES1415361

 Client
 : ENVIRON

 Project
 : AS130383

Analytical Results

Compound CAS Number LOR Unit E8141381-01 .	Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	DUP B1	 	
Biological Dissolved Metals by ICP-MS		CI	ient samplii	ng date / time	09-JUL-2014 15:00	 	
Altemitum	Compound	CAS Number	LOR	Unit	ES1415361-001	 	
Aluminium	EG020F: Dissolved Metals by ICP-MS						
Cadmium	-	7429-90-5	0.01	mg/L	41.6	 	
Chromium	Arsenic	7440-38-2	0.001	mg/L	0.008	 	
Copper	Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Nickel	Chromium	7440-47-3	0.001	mg/L	0.048	 	
Lead	Copper	7440-50-8	0.001	mg/L	0.007	 	
Zinc	Nickel	7440-02-0	0.001	mg/L	0.020	 	
Color	Lead	7439-92-1	0.001	mg/L	0.008	 	
Mercury 7439-97-6 0.0001 mg/L <0.0001 mg/L	Zinc	7440-66-6	0.005	mg/L	0.047	 	
Mercury 7439-97-6 0.0001 mg/L <0.0001 g/L <0.001 mg/L <0.001 mg/L <0.001 mg/L <0.001 mg/L <0.001 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L <0.002 mg/L	EG035F: Dissolved Mercury by FIMS						
Fluoride		7439-97-6	0.0001	mg/L	<0.0001	 	
Fluoride	EK040P: Fluoride by PC Titrator						
Naphthalene		16984-48-8	0.1	mg/L	15.4	 	
Naphthalene	EP075(SIM)B: Polynuclear Aromatic Hy	vdrocarbons					
Acenaphthene 83-32-9 0.2 µg/L <0.2			0.2	μg/L	<0.2	 	
Fluorene 86-73-7 0.2 μg/L <0.2	Acenaphthylene	208-96-8	0.2	μg/L	<0.2	 	
Phenanthrene 85-01-8 0.2 µg/L <0.2 .	Acenaphthene	83-32-9	0.2	μg/L	<0.2	 	
Anthracene 120-12-7 0.2 µg/L <0.2	Fluorene	86-73-7	0.2	μg/L	<0.2	 	
Fluoranthene 206-44-0 0.2 µg/L <0.2	Phenanthrene	85-01-8	0.2	μg/L	<0.2	 	
Pyrene 129-00-0 0.2 µg/L <0.2	Anthracene	120-12-7	0.2	μg/L	<0.2	 	
Benz(a)anthracene 56-55-3 0.2 μg/L <0.2	Fluoranthene	206-44-0	0.2	μg/L	<0.2	 	
Chrysene 218-01-9 0.2 μg/L <0.2	Pyrene	129-00-0	0.2	μg/L	<0.2	 	
Benzo(b+j)fluoranthene 205-99-2 0.2 μg/L <0.2	Benz(a)anthracene	56-55-3	0.2	μg/L	<0.2	 	
Benzo(k)fluoranthene 207-08-9 0.2 μg/L <0.2	Chrysene	218-01-9	0.2	μg/L	<0.2	 	
Benzo(a)pyrene 50-32-8 0.2 μg/L <0.2 <t< th=""><th>Benzo(b+j)fluoranthene</th><th>205-99-2</th><th>0.2</th><th>μg/L</th><th><0.2</th><th> </th><th> </th></t<>	Benzo(b+j)fluoranthene	205-99-2	0.2	μg/L	<0.2	 	
Indeno(1.2.3.cd)pyrene	Benzo(k)fluoranthene	207-08-9	0.2	μg/L	<0.2	 	
Dibenz(a.h)anthracene 53-70-3 0.2 μg/L <0.2	Benzo(a)pyrene	50-32-8	0.2	μg/L	<0.2	 	
Benzo(g.h.i)perylene 191-24-2 0.2 μg/L <0.2	Indeno(1.2.3.cd)pyrene	193-39-5	0.2	μg/L	<0.2	 	
Benzo(a)pyrene TEQ (zero) 0.2 μg/L <0.2 EP075(SIM)S: Phenolic Compound Surrogates	Dibenz(a.h)anthracene	53-70-3	0.2	μg/L	<0.2	 	
EP075(SIM)S: Phenolic Compound Surrogates	Benzo(g.h.i)perylene	191-24-2	0.2	μg/L	<0.2	 	
			0.2		<0.2	 	
	EP075(SIM)S: Phenolic Compound Sur	rogates					
13127-00-3 0.1 /0 21.00	Phenol-d6	13127-88-3	0.1	%	27.6	 	
2-Chlorophenol-D4 93951-73-6 0.1 % 50.6	2-Chlorophenol-D4	93951-73-6	0.1	%	50.6	 	

 Page
 : 4 of 5

 Work Order
 : ES1415361

 Client
 : ENVIRON

 Project
 : AS130383

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Cli	ient sample ID	DUP B1	 	
	Cl	ient sampl	ing date / time	09-JUL-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1415361-001	 	
EP075(SIM)S: Phenolic Compound Surr	ogates - Continue	ı				
2.4.6-Tribromophenol	118-79-6	0.1	%	63.6	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.1	%	51.7	 	
Anthracene-d10	1719-06-8	0.1	%	68.5	 	
4-Terphenyl-d14	1718-51-0	0.1	%	65.8	 	

 Page
 : 5 of 5

 Work Order
 : ES1415361

 Client
 : ENVIRON

 Project
 : AS130383

Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP075(SIM)S: Phenolic Compound Surrogates				
Phenol-d6	13127-88-3	10.0	44	
2-Chlorophenol-D4	93951-73-6	14	94	
2.4.6-Tribromophenol	118-79-6	17	125	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	321-60-8	20	104	
Anthracene-d10	1719-06-8	27.4	113	
4-Terphenyl-d14	1718-51-0	32	112	

QUALITY CONTROL REPORT

: ES1415361 **Work Order** Page : 1 of 5

Client **ENVIRON** Laboratory : Environmental Division Sydney

Contact · MS KIRSTY GREENFIELD Contact · Client Services

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 PO Box 435

THE JUNCTION NSW 2291

E-mail : kgreenfield@environcorp.com E-mail : sydney@alsglobal.com

Telephone : +61 02 4962 5444 +61-2-8784 8555 Telephone Facsimile +61 02 4962 5888 Facsimile +61-2-8784 8500

Project : AS130383 QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site

Address

C-O-C number **Date Samples Received** : 14-JUL-2014 : ----Sampler : KG Issue Date : 21-JUL-2014

Order number No. of samples received : 1

Quote number : SY/433/13 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025. Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics Celine Conceicao Senior Spectroscopist Sydney Inorganics Pabi Subba Senior Organic Chemist Sydney Organics

> Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

 Page
 : 2 of 5

 Work Order
 : ES1415361

 Client
 : ENVIRON

 Project
 : AS130383

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

 Page
 : 3 of 5

 Work Order
 : ES1415361

 Client
 : ENVIRON

 Project
 : AS130383

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EG020F: Dissolved	Metals by ICP-MS (QC Lo	t: 3543302)								
ES1415322-015 Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.004	0.004	0.0	No Limit	
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.005	0.001	126	No Limit	
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.003	0.003	0.0	No Limit	
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.022	0.019	14.0	No Limit	
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	3.08	3.01	2.1	0% - 20%	
ES1415459-001 Anonymous	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.009	0.009	0.0	No Limit	
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.009	0.009	0.0	No Limit	
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.006	0.006	0.0	No Limit	
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.010	0.008	18.7	No Limit	
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.62	0.60	2.4	0% - 20%	
EG035F: Dissolved	Mercury by FIMS (QC Lot	: 3543300)								
ES1415309-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
ES1415309-011	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
EK040P: Fluoride by	PC Titrator (QC Lot: 354	11970)								
ES1415361-001	DUP B1	EK040P: Fluoride	16984-48-8	0.1	mg/L	15.4	15.4	0.0	0% - 20%	
ES1415432-009	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	1.3	1.2	0.0	0% - 50%	

 Page
 : 4 of 5

 Work Order
 : ES1415361

 Client
 : ENVIRON

 Project
 : AS130383

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	d CAS Number LOR Unit Result Conce		Concentration	LCS	Low	High			
EG020F: Dissolved Metals by ICP-MS (QCLot: 3543302)									
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	98.0	78	118	
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	95.8	80	118	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	95.6	82	112	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	99.4	81	113	
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	95.9	79	113	
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	96.3	81	113	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	96.8	81	115	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	94.9	80	116	
EG035F: Dissolved Mercury by FIMS (QCLot: 3543300)									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	89.2	78	114	
EK040P: Fluoride by PC Titrator (QCLot: 3541970)									
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5.0 mg/L	102	75	119	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLc	ot: 3540960)								
EP075(SIM): Naphthalene	91-20-3	0.2	μg/L	<1.0	20 μg/L	85.6	58.6	119	
EP075(SIM): Acenaphthylene	208-96-8	0.2	μg/L	<1.0	20 μg/L	85.2	63.6	114	
EP075(SIM): Acenaphthene	83-32-9	0.2	μg/L	<1.0	20 μg/L	86.0	62.2	113	
EP075(SIM): Fluorene	86-73-7	0.2	μg/L	<1.0	20 μg/L	83.8	63.9	115	
EP075(SIM): Phenanthrene	85-01-8	0.2	μg/L	<1.0	20 μg/L	89.1	62.6	116	
EP075(SIM): Anthracene	120-12-7	0.2	μg/L	<1.0	20 μg/L	70.4	64.3	116	
EP075(SIM): Fluoranthene	206-44-0	0.2	μg/L	<1.0	20 μg/L	91.0	63.6	118	
EP075(SIM): Pyrene	129-00-0	0.2	μg/L	<1.0	20 μg/L	90.4	63.1	118	
EP075(SIM): Benz(a)anthracene	56-55-3	0.2	μg/L	<1.0	20 μg/L	85.5	64.1	117	
EP075(SIM): Chrysene	218-01-9	0.2	μg/L	<1.0	20 μg/L	90.2	62.5	116	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.2	μg/L	<1.0	20 μg/L	96.3	61.7	119	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.2	μg/L	<1.0	20 μg/L	95.6	61.7	117	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.2	μg/L	<0.5	20 μg/L	88.9	63.3	117	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.2	μg/L	<1.0	20 μg/L	86.8	59.9	118	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.2	μg/L	<1.0	20 μg/L	84.7	61.2	117	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.2	μg/L	<1.0	20 μg/L	86.0	59.1	118	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs), Ideal recovery ranges stated may be waived in the event of sample matrix interference.

 Page
 : 5 of 5

 Work Order
 : ES1415361

 Client
 : ENVIRON

 Project
 : AS130383

Sub-Matrix: WATER		Matrix Spike (MS) Report							
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)		
Laboratory sample ID	Client sample ID	Method: Compound CAS Number Concentration MS Low							
EG020F: Dissolved Metals by ICP-MS (QCLot: 3543302)									
ES1415322-017	Anonymous	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	119	70	130		
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	113	70	130		
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	98.6	70	130		
		EG020A-F: Copper	7440-50-8	0.2 mg/L	93.2	70	130		
		EG020A-F: Lead	7439-92-1	0.2 mg/L	105	70	130		
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	100	70	130		
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	124	70	130		
EG035F: Dissolved	Mercury by FIMS (QCLot: 3543300)								
ES1415309-002	Anonymous	EG035F: Mercury	7439-97-6	0.0100 mg/L	89.5	70	130		
EK040P: Fluoride k	y PC Titrator (QCLot: 3541970)								
ES1415361-001	DUP B1	EK040P: Fluoride	16984-48-8	25 mg/L	114	70	130		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (N	(MSD) Report				
				Spike	Spike Red	overy (%)	Recovery	Limits (%)	RPL	Os (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EK040P: Fluoride b	y PC Titrator (QCLot: 3541970)									
ES1415361-001	DUP B1	EK040P: Fluoride	16984-48-8	25 mg/L	114		70	130		
EG035F: Dissolved	Mercury by FIMS (QCLot: 3543300)									
ES1415309-002	Anonymous	EG035F: Mercury	7439-97-6	0.0100 mg/L	89.5		70	130		
EG020F: Dissolved	Metals by ICP-MS (QCLot: 3543302)									
ES1415322-017	Anonymous	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	119		70	130		
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	113		70	130		
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	98.6		70	130		
	EG020A-F: Copper	7440-50-8	0.2 mg/L	93.2		70	130			
		EG020A-F: Lead	7439-92-1	0.2 mg/L	105		70	130		
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	100		70	130		
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	124		70	130		

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES1415361** Page : 1 of 5

Client : ENVIRON Laboratory : Environmental Division Sydney

Contact : MS KIRSTY GREENFIELD Contact : Client Services

Address : PO Box 435 : 277-289 Woodpark Road Smithfield NSW Australia 2164

THE JUNCTION NSW 2291

Telephone : +61 02 4962 5444 Telephone : +61-2-8784 8555
Facsimile : +61 02 4962 5888 Facsimile : +61-2-8784 8500

Project : AS130383 QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : --- Date Samples Received
 : 14-JUL-2014

 Sampler
 : KG
 Issue Date
 : 21-JUL-2014

Order number : ----

Quote number : SY/433/13 No. of samples received : 1

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

 Page
 : 2 of 5

 Work Order
 : ES1415361

 Client
 : ENVIRON

 Project
 : AS130383

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation:	x = Holding time	breach ; ✓ = Withir	n holding time.
Method	Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) DUP B1	09-JUL-2014		05-JAN-2015		17-JUL-2014	05-JAN-2015	✓
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) DUP B1	09-JUL-2014		06-AUG-2014		17-JUL-2014	06-AUG-2014	✓
EK040P: Fluoride by PC Titrator							
Clear Plastic Bottle - Natural (EK040P) DUP B1	09-JUL-2014		06-AUG-2014		15-JUL-2014	06-AUG-2014	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM)) DUP B1	09-JUL-2014	15-JUL-2014	16-JUL-2014	✓	16-JUL-2014	25-AUG-2014	✓

 Page
 : 3 of 5

 Work Order
 : ES1415361

 Client
 : ENVIRON

 Project
 : AS130383

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Matrix: WATER				Evaluation	: × = Quality Co	ntrol frequency r	not within specification; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Mercury by FIMS	EG035F	2	15	13.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	16	12.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	2	10	20.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Dissolved Mercury by FIMS	EG035F	1	15	6.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	10	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	7	14.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Dissolved Mercury by FIMS	EG035F	1	15	6.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	10	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	7	14.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Dissolved Mercury by FIMS	EG035F	1	15	6.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	10	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Page
 : 4 of 5

 Work Order
 : ES1415361

 Client
 : ENVIRON

 Project
 : AS130383

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Fluoride by PC Titrator	EK040P	WATER	APHA 21st ed., 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3) . ALS default excludes sediment which may be resident in the container.

 Page
 : 5 of 5

 Work Order
 : ES1415361

 Client
 : ENVIRON

 Project
 : AS130383

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

Appendix I

Groundwater Field Sheets

Ref. Num	nber: A\$13038	3		Date: 10/7/14		
	Phase 2 ESA			Sample Number: MW06 Location: Buckground.		
Location: Hydro Kurri Kurri				Location: Bucke	iround.	
	apours in well:		ppm	Measurement device:		
Depth to	water: (from top	o of casing)	2.54 m	Measurement Device:		
Stickup:						
Well Dept	th (from TOC):					
Walleur						
Purge Me						
Volume in			L	Purge Volume:	<u> </u>	
Start Purg	e:			End Purge:		
рН	TEMP (°C)	D.O.	REDOX	ECMS LITRES REMOVED	Comments (colour, odour, etc)	
6.19	15.9	8:27	163	15.92 0.5	Clear	
6.20	15.9	2.92.	161	7465	0,007	
6.19	16.0	1-84	157	24-89 1.5		
- 1						
_						
	9004 9004 9001					
Sampling	Method:					
Type: Wel	l / River / Surfac	e water / Bla	nk			
Start Sam	oling:			Finish Sampling:		
Sample A	ppearance, eg	colour, sedin	nent:			
Pre-Samp		pH:		Spec.Cond:	Temp:	
Pre-Sampl	ling:	pH:		Spec.Cond:	Temp:	
Misegles			The state of the state of			
Well Head						
	red ? Y / N Eas	e of filtering?				
	Weather Condition:					
	Taken? Y/N	Duplicate N				
	[aken? Y/N	Triplicate No				
QA/QC To	aken? Y/N (QA/QC Numl	oer:			

Ref. Number: A\$130383				Date: 9/7/14		
	Phase 2 ESA			Sample Number: MWO9		
Location	: Hydro Kurri K	UTTI		Location:		
	distrements			**.		
Organic vapours in well: ppm				Measurement device:		
	water: (from to	o of casing)	2.20 m	Measurement Device:		
Stickup:						
Well Dept	th (from TOC):					
Wellsur						
Purge Me Volume in				Burgo Volumes		
Start Purg			L	Purge Volume: End Purge:	L	
			-		Comments	
На	TEMP (°C)	D.O.	REDOX	EGNS LITRES REMOVED	(colour, odour, etc)	
7.38	19.0	7.25	63	3.06 0.2	Clear	
7.37	19.0	5.14	64 66	4.66		
7.36	189	5:04	66	4.59 1.5		
Sampling						
	/ River / Surfac	e water / Bla	nk			
Start Samı	oling:			Finish Sampling:		
Sample A	ppearance, eg	colour, sedim	nent:			
Pre-Samp	ling:	pH:		Spec.Cond:	Temp:	
Pre-Samp	ling:	pH:		Spec.Cond:	Temp:	
		And a Section Section 1				
	Try Michelle					
Well Head						
	red ? Y/N Eas	e of filtering?				
	Weather Condition:					
	Taken? Y/N	Duplicate N				
	Taken? Y/N	Triplicate Nu				
WA/WC IC	aken? Y/N (QA/QC Numb	Jer.			

Ref. Number: A\$130383	Date: 917114			
Project: Phase 2 ESA	Sample Number: WWO7			
Location: Hydro Kurri Kurri	Location: Refuelling Area			
Fleic Measurements				
Organic vapours in well: ppm	Measurement device:			
Depth to water: (from top of casing) 2.20 m	Measurement Device:			
Stickup:				
Well Depth (from TOC):				
Well Purging				
Purge Method:				
Volume in Casing:	Purge Volume:			
Start Purge:	End Purge:			
pH TEMP (°C) D.O. REDOX	EC LITRES REMOVED Comments (colour, odour, etc)			
5.93 15.1 11.03 160	1315 0.5 Clear			
6.16 15.3 2.70 15	2058			
6.22 15.4 2.03 126	1500 1.5			
Sampling				
Sampling Method:				
Type: Well / River / Surface water / Blank				
Start Sampling:	Finish Sampling:			
Sample Appearance, eg colour, sediment:				
Pre-Sampling: pH:	Spec.Cond: Temp:			
Pre-Sampling: pH:	Spec.Cond: Temp:			
Miscellaneous Field Comments Well Head Integrity				
Well Head Integrity:				
Field Filtered ? Y / N Ease of filtering? Weather Condition:				
Duplicate Taken? Y / N Duplicate Number: Triplicate Taken? Y / N Triplicate Number:				
QA/QC Taken? Y / N QA/QC Number:				
and a region of the state of th				

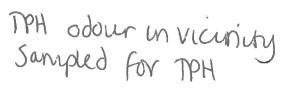
Ref. Number: A\$130383				Date: 9/7/14		
	Phase 2 ESA			Sample Number: MW08		
Location: Hydro Kurri Kurri				Sample Number: MW08 Location: Refuelling Area		
	esvicinienis					
	apours in well:		ppm	Measurement device:		
Depth to	water: (from top	o of casing)	1.32 m	Measurement Device:		
Stickup:						
Well Dept	h (from TOC):					
Meiter						
Purge Me						
Volume ir			L	Purge Volume:	L	
Start Purg	e:			End Purge:		
рН	TEMP (°C)	D.O.	REDOX	EC LITRES REMOVED	Comments (colour, odour, etc)	
6.25%	17.6	10.03	119	239.7 0.5	clear	
6.27	17.8	4.35	115	296 1	0(-50)	
6-26	17.9	11.12	115	322 1.5		
		-				
Se moins						
Sampling						
	/ River / Surfac	e water / Bla	nk			
Start Sam				Finish Sampling:		
<u> </u>	ppearance, eg		nent:			
Pre-Samp		pH:		Spec.Cond:	Temp:	
Pre-Samp	ling:	pH:		Spec.Cond:	Temp:	
W17 Wales 7 1	was a Mish side sto	C. Market and S. C. Company				
	Ren I Coles	in this first that		***		
Well Head		o of filtoring?				
	Field Filtered ? Y / N Ease of filtering? Weather Condition:					
	Taken? Y/N	Duplicate N	Jumber			
	Taken? Y/N	Triplicate N				
		QA/QC Num				
3,,00		~. , ~ ~ 110 111				
_ <u></u>						

Ref. Number: A\$130383	Date: 9/7/14				
Project: Phase 2 ESA	Sample Number: MW(0				
Location: Hydro Kurri Kurri	Location:				
Field Medsyrements					
Organic vapours in well: ppm	Measurement device:				
Depth to water: (from top of casing) 3.15 m	Measurement Device:				
Stickup:					
Well Depth (from TOC):					
Well Purging					
Purge Method:	1_				
Volume in Casing:	Purge Volume:				
Start Purge:	End Purge:				
pH TEMP (°C) D.O. REDOX	EC LITRES REMOVED Comments (colour, odour, etc)				
6.13 9.1 1599.73 107	6.30 0.5 Lear				
6.13 18.9 1.92 107	10.27				
6.17 18.9 1.40 107	10.26				
Sampling					
Sampling Method:					
Type: Well / River / Surface water / Blank					
Start Sampling:	Finish Sampling:				
Sample Appearance, eg colour, sediment:					
Pre-Sampling: pH:	Spec.Cond: Temp:				
Pre-Sampling: pH:	Spec.Cond: Temp:				
	'				
Missister Aldin Andrew					
Well Head Integrity:					
Field Filtered ? Y / N Ease of filtering?					
Weather Condition:					
Duplicate Taken? Y / N Duplicate Number:					
Triplicate Taken? Y / N Triplicate Number:					
QA/QC Taken? Y / N QA/QC Number:					

Ref. Number: A\$130383				Date: 9/7/14		
	Phase 2 ESA			Sample Number: MWII		
Location	: Hydro Kurri K	urri		Location:		
100 100 100 100 100 100 100 100 100 100						
	rapours in well:		ppm	Measurement device:		
	water: (from top	of casing)	1.96 m	Measurement Device:		
Stickup:			<u> </u>			
Well Dept	h (from TOC):					
and the last selection						
Wel Purs Purge Me		Hama Market				
Volume in				Duran Valuma	1	
Start Purg			L	Purge Volume:	<u>L</u>	
Sidn Fuigi	e.			End Purge:	C	
рН	TEMP (°C)	D.O.	REDOX	ECA LITRES REMOVED	Comments (colour, odour, etc)	
6-78	16.4	7.72	57	1396 0.5	clear	
6.75	16.6	4 38	58	22001	0,0	
6-71	16.5	3.81	56	2146 1.5		
		,		2.70		
Sampling						
	/ River / Surfac	e water / Blai	nk			
Start Samp				Finish Sampling:		
	ppearance, eg		nent:			
Pre-Sampl		pH:		Spec.Cond:	Temp:	
Pre-Sampling: pH:			Spec.Cond:	Temp:		
volume 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			<u>~</u>			
	Miscolianeau Indianación (California California					
Well Head				<u></u>		
	red ? Y/N Eas	e or riirering?				
Weather (Dunlingto	li mala em			
	Taken? Y/N	Duplicate N				
	Taken? Y/N	Triplicate Number				
WA/WC IC	aken? Y/N (QA/QC Numb	J e r:			

Ref. Number: A\$130383				Date: 9714			
	Phase 2 ESA			Sample Number: MWIZ Location: Anode Waste Pile			
Location	: Hydro Kurri Kı	vrri		Location: Anode (ubste Pile		
	diffements						
	apours in well:		ppm	Measurement device:			
	water: (from top	of casing) (5·53 m	Measurement Device:			
Stickup:	h /frama TOCh						
well Dept	h (from TOC):						
Wall Pur-							
Purge Me				The state of the s	<u> </u>		
Volume in	Casing:		L	Purge Volume:	L		
Start Purg	e:			End Purge:			
Нq	TEMP (°C)	D.O.	REDOX	EC MS LITRES REMOVED	Comments (colour, odour, etc)		
6.35	20-9	4.43	141	10.32. 0.5	dear		
	20-6	3.01	139	17.30	Orcia		
6.24	20-4	2.46	134	16.02 1.5			
V							
	-						
C Antonia Til							
Sampling			¥.				
	/ River / Surfac	e water / Blar	nk				
Start Same		e water / blai	IK .	Finish Sampling:			
	ppearance, eg	colour, sedim	ent:	· · · · · · · · · · · · · · · · · · ·			
Pre-Samp		pH:		Spec.Cond:	Temp:		
Pre-Sampl	ling:	pH:		Spec.Cond:	Temp:		
		,					
Litter.	to Hace						
Well Head							
Field Filtered ? Y / N Ease of filtering?							
Weather (
<u> </u>	Taken? Y/N	Duplicate N					
	Taken? Y/N	Triplicate Nu					
WA/WC IC	aken? Y/N (QA/QC Numb	er:				
_							

Metals + AL + F + PAH wetrace



Ref. Number: A\$130383	Date: 9/7/14	
Project: Phase 2 ESA	Sample Number: MW13	
Location: Hydro Kurri Kurri	Sample Number: MW13 Location: Anode Waste Pile	
Heid Megsurements		
Organic vapours in well: ppm	Measurement device:	
Depth to water: (from top of casing) 1-76 m	Measurement Device:	
Stickup:		
Well Depth (from TOC):		
Well Purging		
Purge Method:		
Volume in Casing:	Purge Volume:	
Start Purge:	End Purge:	
pH TEMP (°C) D.O. REDOX	EC LITRES REMOVED Comments (colour, odour, etc)	
7.40 18.3 9.35 52	3 10 0.5 brown tyge	
7.35 180 3.98 5	4.91	
7.32 7.9 3.35 50	3-32-5:04 1.5	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
Sampling		
Sampling Method:		
Type: Well / River / Surface water / Blank		
Start Sampling:	Finish Sampling:	
Sample Appearance, eg colour, sediment:		
Pre-Sampling: pH:	Spec.Cond: Temp:	
Pre-Sampling: pH:	Spec.Cond: Temp:	
Miscolesies leiets history		
Well Head Integrity:		
Field Filtered ? Y / N Ease of filtering?		
Weather Condition:		
Duplicate Taken? Y / N Duplicate Number:		
Triplicate Taken? Y / N Triplicate Number:		
QA/QC Taken? Y / N QA/QC Number:		

Ref. Number: A\$130383				Date: 9/2/14	
	Phase 2 ESA			Sample Number: MW 14	
Location: Hydro Kurri Kurri				Sample Number: MW14 Location: Carbon Plant	
FRENCHE	dsirements				
	vapours in well:		p pm	Measurement device:	MAN 14A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Depth to	water: (from top	o of casing) (3-25 m	Measurement Device:	
Stickup:					
Well Dept	th (from TOC):				
Campanian Company					
WellPur					
Purge Me					
Volume in			L	Purge Volume:	L
Start Purg	e:		***	End Purge:	
На	TEMP (°C)	D.O.	REDOX	EC _{mS} LITRES REMOVED	Comments (colour, odour, etc)
7.18	19.7	9-07	42.	3.16 0.5	Clear
7:15	19.8	4.99	44	5.04	
7-14	19.8	4-83	45	5.04 1.5	
,					
state and a state of the state					
Someline					
Sampling					
	/ River / Surfac	e water / Blai	nk 		
Start Samp				Finish Sampling:	
	ppearance, eg		nent:	0 1	T_
Pre-Sampl		pH:		Spec.Cond:	Temp:
Pre-Sampl	ling:	pH:		Spec.Cond:	Temp:
Well Head	CAN MINISTER TO THE PARTY OF TH	and the letters and		<u> </u>	
	red ? Y/N Eas	e of filterina?	<u>, </u>		
Weather (
Duplicate	Taken? Y/N	Duplicate N	lumber:		
	Taken? Y/N	Triplicate Nu			
		QA/QC Numb			
		·			

Ref. Number: AS130383				Date: (14) 7-14	
Project:	Phase 2 ESA			Sample Number: MW	115
Location: Hydro Kurri Kurri				Location: Carbon Plant	
Horizon	California ments				
Organic vapours in well: ppm				Measurement device:	
	water: (from to	o of casing) 2	3.05 m	Measurement Device:	
Stickup:					
Well Dept	th (from TOC):				
Walleur					
Purge Me					
Volume in			L	Purge Volume:	L
Start Purg	e:	···		End Purge:	
РН	TEMP (°C)	D.O.	REDOX	EC WLITRES REMOVED	Comments (colour, odour, etc)
6.59	16.4	2.86	90	1936 0.5	Clear
6.60	19.6	2.54	81	1949	Ole Co
6.60	19.7	2.39	81	1954 1.5	
			_		
					·
Samolo	The same of the sa		3 %		
Sampling					
	I / River / Surfac	e water / Blar	nk 		
Start Sam				Finish Samplin g:	
	ppearance, eg		nent:		
Pre-Samp		pH:		Spec.Cond:	Temp:
Pre-Samp	ling:	pH:		Spec.Cond:	Temp:
Well Head	Cours day . C. S. March . C. C. C. C. C. C. C. C. C. C. C. C. C			*	
	red ? Y/N Eas	e of filtering?		- ·	
Weather (C OI IIIICIIII I G T			
	Taken? Y/N	Duplicate N	lumber:		
	Taken? Y/N	Triplicate Nu			
		QA/QC Numb			
		, .p, (· · · · · · · · · · · · · · · · · ·		

Ref. Number: A\$130383				Date: 1013-14	
	Phase 2 ESA			Sample Number: MW6	
Location	: Hydro Kurri K	urri 		Location: (anson P)	ant
	CENTERNAME				
Organic vapours in well: ppm				Measurement device:	
	water: (from top	o of casing)	0.61 m	Measurement Device:	
Stickup:					
Well Dept	h (from TOC):	··			
Wellfur					
Purge Me Volume in				Di wasa Mali wasa i	
Start Purg			L	Purge Volume:	L
310(11 big				End Purge:	Comments
рН	TEMP (°C)	D.O.	REDOX	EC, LITRES REMOVED	(colour, odour, etc)
7.03	7.3	9.98	117	Z98 0·5	Clear
6:99	17.0	596	115	440 1	
6.97	17.0	7.88	114	458 1.5	
		i			
Sampling Sampling		THE RUNNING ASSESSMENT			
	/ River / Surfac	e water / Blai	nk		
Start Same		e water / blai	I IK	Finish Sampling:	
	ppearance, eg	colour, sedim	 nent:	Tillist Samping.	
Pre-Sampl		pH:		Spec.Cond:	Temp:
Pre-Sampl		pH:		Spec.Cond:	Temp:
				·	
	Contraction of			Car y	
Well Head		Account Septimble and the alternative Ph.		Mark and the Control of the Control	
Field Filter	red? Y/N Eas	e of filtering?			
Weather (Condition:				
	Taken? Y/N	Duplicate N			
	Taken? Y/N	Triplicate Nu			
QA/QC To	ken? Y/N (QA/QC Numb	oer:		

Ref. Number: A\$130383		Date: 1017-114	
Project: Phase 2 ESA		Sample Number: MW17	
Location: Hydro Kurri Kurri		Sample Number: MW17 Location: Coupon Plant	
Heid Mersylements			
Organic vapours in well:	ppm	Measurement device:	
Depth to water: (from top of casi	ng) 1-45 m	Measurement Device:	
Stickup:			
Well Depth (from TOC):			
(D) (C)			
Well Puiging			
Purge Method:		Dimera Makimaa	1
Volume in Casing:	L	Purge Volume:	
Start Purge:		End Purge:	0
pH TEMP (°C) D.O). REDOX	EC LITRES REMOVED	Comments (colour, odour, etc)
7.63 17.4 11.4	3 137	48.8 0.5	dear
7.02 17.9 4.7	19 131	896	
694 18.0 4.4	13 175	888 1-5	
Samples			
Sampling Method:			
Type: Well / River / Surface water	/ Blank		
Start Sampling:		Finish Sampling:	
Sample Appearance, eg colour,	sediment:		
Pre-Sampling: p	oH:	Spec.Cond:	Temp:
Pre-Sampling: p	oH:	Spec.Cond:	Temp:
Marian and Clare			
Well Head Integrity:			
Field Filtered ? Y / N Ease of filte	ring?		
Weather Condition:			
Duplicate Taken? Y / N Duplic	ate Number:		
Triplicate Taken? Y/N Triplica	ate Number:		
QA/QC Taken? Y / N QA/QC	Number:		

	nber: A\$13038	3		Date: 0 7 14					
	Phase 2 ESA	•		Sample Number: MWIX					
	: Hydro Kurri K	Urri 		Location: Carbon Plant					
	eur Grienis								
	vapours in well:		ppm	Measurement device:					
	water: (from to	o of casing)	1.73 m	Measurement Device:					
Stickup:									
Well Dept	h (from TOC):								
ETTER A TERM	Well Eurging								
Purge Me					displacement to the				
Volume in			L	Purge Volume:					
Start Purg				End Purge:					
Ť			272.07		Comments				
рН	TEMP (°C)	D.O.	REDOX	ECUS LITRES REMOVED	(colour, odour, etc)				
5.35	16.2	12.71	178	2328 05	clear				
5.42	16.4	3.61	175	233 i					
5.52	66	3-P6	172	234 1.5					
560	16.6			1.7					
		_							
	· CARGO LEGGERATION DE		(1817) (1814)		KT S PROBLEM TO SET THE PARTY.				
Sampling									
	/ River / Surfac	e water / Bla	nk						
Start Samp		· · · · · · · · · · · · · · · · · · ·	-	Finish Sampling:					
·	ppearance, eg	colour, sedin	nent:	The same of the sa					
Pre-Sampl		pH:		Spec.Cond:	Temp:				
Pre-Sampl	ing:	pH:		Spec.Cond:	Temp:				
	TOTAL COME								
Well Head									
	red ? Y/N Eas	e of filtering?							
Weather C									
	Taken? Y/N	Duplicate N							
	[aken? Y/N	Triplicate No							
QA/QC 1c	ken? Y/N (QA/QC Numl	oer:						

Ref. Number: A\$130383	Date: 10/7/14				
Project: Phase 2 ESA	Sample Number: Masses 53B				
Location: Hydro Kurri Kurri	Location: Carbon Plant				
Fleid Medsurements					
Organic vapours in well: ppm	Measurement device:				
Depth to water: (from top of casing) 4-45 m	Measurement Device:				
Stickup:					
Well Depth (from TOC):					
Well Purging					
Purge Method:					
Volume in Casing:	Purge Volume: L				
Start Purge:	End Purge:				
pH TEMP (°C) D.O. REDOX	EC LITRES REMOVED Comments (colour, odour, etc)				
7-38 18-3 10-86 93	711 0.5 Clear				
7.29 18.8 7.54 92	1167				
7-18 19.0 7.28 92	1188 1.5				
7:13 19:4 7:14 91	1213 2				
	125				
Sampling					
Sampling Method:					
Type: Well / River / Surface water / Blank					
Start Sampling:	Finish Sampling:				
Sample Appearance, eg colour, sediment:					
Pre-Sampling: pH:	Spec.Cond: Temp:				
Pre-Sampling: pH:	Spec.Cond: Temp:				
	·				
Miscalaneov: 1:19:19:00 miscans					
Well Head Integrity:					
Field Filtered ? Y / N Ease of filtering?					
Weather Condition:					
Duplicate Taken? Y / N Duplicate Number:					
Triplicate Taken? Y / N Triplicate Number:					
QA/QC Taken? Y / N QA/QC Number:					

Ref. Number: A\$130383	Date: 10/7/14				
Project: Phase 2 ESA	Sample Number: Alexander 53A				
Location: Hydro Kurri Kurri	Location: Carbon Plant				
Fleid Medsurements					
Organic vapours in well: ppm	Measurement device:				
Depth to water: (from top of casing) 9 m	Measurement Device:				
Stickup:					
Well Depth (from TOC):					
with with a second					
Well Purging					
Purge Method:					
Volume in Casing:	Purge Volume:				
Start Purge:	End Purge:				
pH TEMP (°C) D.O. REDOX	EGUS LITRES REMOVED Comments (colour, odour, etc)				
8.07 15.1 12.14 77	1862 0.5 Jean				
43811 15.3 9.56 79	185				
8.13 15.3 9.14 81	720				
8 3 13 0 1 1 01	210 13				
Sampling					
Sampling Method:					
Type: Well / River / Surface water / Blank					
Start Sampling:	Finish Sampling:				
Sample Appearance, eg colour, sediment:					
Pre-Sampling: pH:	Spec.Cond: Temp:				
Pre-Sampling: pH:	Spec.Cond: Temp:				
Mistological Rigidos Sandidas					
Well Head Integrity:	i b				
Field Filtered ? Y / N Ease of filtering?					
Weather Condition:					
Duplicate Taken? Y / N Duplicate Number:					
Triplicate Taken? Y / N Triplicate Number:					
QA/QC Taken? Y / N QA/QC Number:					

Ref. Number: A\$130383	Date: 10 7/14					
Project: Phase 2 ESA	Sample Number: MW19					
Location: Hydro Kurri Kurri	Location: Diesel Spray Area					
Feld Medsurgitlenit						
Organic vapours in well: ppm	Measurement device:					
Depth to water: (from top of casing) 2.39	m Measurement Device:					
Stickup:						
Well Depth (from TOC):						
WGI (Zurging) Purge Method:						
Volume in Casing:	I Divine Values					
Start Purge:	L Purge Volume:					
sidiffolge.	End Purge:					
pH TEMP (°C) D.O. RED	(colour, odour, etc)					
6.42 9.5 5.40 74	764 0.5 clear					
6.39 19.6 3.41 75	1113					
6.38 19.7 2.54 77	- 111 1.2					
·						
The state of the s						
Sampling						
Sampling Method:						
Type: Well / River / Surface water / Blank	[C					
Start Sampling:	Finish Sampling:					
Sample Appearance, eg colour, sediment:	Specific Trans					
Pre-Sampling: pH:	Spec.Cond: Temp:					
Pre-Sampling: pH:	Spec.Cond: Temp:					
Alscellepears lield Comments						
Well Head Integrity:						
Field Filtered ? Y / N Ease of filtering?						
Weather Condition:						
Duplicate Taken? Y / N Duplicate Number	r:					
Triplicate Taken? Y / N Triplicate Number						
QA/QC Taken? Y / N QA/QC Number:						

Ref. Number: AS130383				Date: 10/7/14		
Project: Phase 2 ESA				Location: Diesel Spray Area		
Location: Hydro Kurri Kurri				Location: Diesel S	pray Area	
Fig. 14	GREGIEA					
	apours in well:		ppm	Measurement device:		
Depth to	water: (from top	o of casing)	2,63 m	Measurement Device:		
Stickup:						
Well Dept	h (from TOC):					
<u> </u>						
WOLL						
Purge Me						
Volume in			L	Purge Volume:	L	
Start Purg	e:	, · ····		End Purge:		
рН	TEMP (°C)	D.O.	REDOX	ECus LITRES REMOVED	Comments (colour, odour, etc)	
7.19	69	11.82	77	1909 0.5	clear	
7-02	17-2	6.77	78	1909 0.5 285ms 1		
6.94	17.3	6.69	78	2.57 1.5		
, ,	, , , , , , , , , , , , , , , , , , ,					
The Cale of the State of the St						
Maria de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de						
Sampling			1	· · · · · · · · · · · · · · · · · · ·		
	/ River / Surfac	e water / Blar	nk 			
Start Samp				Finish Sampling:		
	ppearance, eg		nent:	C	-1-	
Pre-Sampl		pH:		Spec.Cond:	Temp:	
Pre-Sampling: pH:				Spec.Cond:	Temp:	
Miscoli-pastic Peleice of his first						
Well Head				<u> </u>		
	red ? Y/N Eas	e of filtering?				
Weather C	 					
	Taken? Y/N	Duplicate N	lumber:			
· · · · · · · · · · · · · · · · · · ·	Taken? Y/N	Triplicate Nu				
<u> </u>		QA/QC Numk				
				 		

Ref. Number: AS130383				Date: 9 7/14		
Project: F	Phase 2 ESA			Samp	le Number: MW	101
Location	: Hydro Kurri K	urri		Sample Number: MWIOI Location: Refuelling Area		
	anny archit					
Organic v	apours in well:		ppm	Measurement device:		
Depth to water: (from top of casing) 1.76 m				Measurement Device:		
Stickup:						
Well Dept	h (from TOC):		*****			
uking of the takens a single						
	AND STREET					
Purge Me						
Volume in			_ L		Volume:	
Start Purg	e:		-	End Pu	rge:	
рН	TEMP (°C)	D.O.	REDOX	EC	LITRES REMOVED	Comments (colour, odour, etc)
6.61	50-1	9.45	102	345	0.5	dear
6.59	20-4	4.16	96	643	1	
6.15	20.2	425	94	548		
			- ,	,		
Administrative Committee of a Labour						
California.						
Sampling						
	I / River / Surfac	e water / Blai	nk 	,		
Start Sam				Finish Sampling:		
	ppearance, eg	 	nent:			
Pre-Sampl		pH:		Spec.C		Temp:
Pre-Samp	ling:	pH:		Spec.C	Cond:	Temp:
Ait Color of the Comments						
Well Head Integrity:						
Field Filtered ? Y / N Ease of filtering? Weather Condition:						
	Taken? Y/N	Duplicate N	lumber:			
	Taken? Y/N	Triplicate Nu				
·		QA/QC Numk				
3,7,4010						
					·	

Ref. Number: A\$130383				Date: 917114			
Project: Phase 2 ESA				Sample	Number: MW	102	
Location: Hydro Kurri Kurri				Location: Refuelling Area			
	GENTLEMENT						
Organic vapours in well: ppm				Measure	ement device:		
Depth to	Depth to water: (from top of casing) 1.53 m				Measurement Device:		
Stickup:							
Well Dept	th (from TOC):						
Wenter	A STATE OF THE PARTY OF THE PAR						
Purge Me				5 11			
Volume in			L	Purge Vo		L	
Start Purg	e:	· · · · · · · · · · · · · · · · · · ·		End Purg	ge:		
рН	TEMP (°C)	D.O.	REDOX		ITRES REMOVED	Comments (colour, odour, etc)	
7.12	19.5	5.50	110	482	0.5	dear	
7-10	19.5	14.72	107	483	1		
7.06	19.5	4-29	106	482	1.2		
, -				,			
Same in							
Sampling							
Type: Well	I / River / Surfac	e water / Blar	nk				
Start Sam	oling:			Finish Sampling:			
Sample A	ppearance, eg	colour, sedim	nent:				
Pre-Sampl		pH:		Spec.Co		Temp:	
Pre-Sampl	ling:	pH:		Spec.Co	ond:	Temp:	
			· •				
100 - 100 B - AV				6			
Well Head							
	red? Y/N Eas	e of filtering?					
Weather (
	Taken?(Y) N	Duplicate N		UPA			
	Taken? Y/N	Triplicate Nu					
QA/QC To	aken? Y/N (QA/QC Numb	per:				

Ref. Number: AS130383				Date: 9/7/14		
Project: Phase	2 ESA			Sample Number: MW103		
Location: Hydro Kurri Kurri				Location: Anode waste Pile		
The first of the same	Gilfals					
Organic vapou			ppm	Measurement device:		
Depth to water	: (from top o	f casing)	1.79 m	Measurement Device:		
Stickup:						
Well Depth (fro	m TOC):					
- <u>-1</u>						
Walterand						
Purge Method:						
Volume in Casi	ng:		L _.	Purge Volume:	L	
Start Purge:		····	_	End Purge:		
pH TEA	MP (°C)	D.O.	REDOX	EC LITRES REMOVED	Comments (colour, odour, etc)	
6-12 18	.2	10.69	80	1657 0.5	clear	
6.02 17	6	281	81	2-48 ms 1		
5.98 17	5	2.02	93	2.21 1.5		
Serno ler			i i			
Sampling Meth						
Type: Well / Rive	er / Surface v	vater / Blar	nk			
Start Sampling:				Finish Sampling:		
Sample Appea	rance, eg co	olour, sedim	ent:			
Pre-Sampling:		pH:		Spec.Cond:	Temp:	
Pre-Sampling:		pH:		Spec.Cond:	Temp:	
	THE PARTY OF THE P					
Well Head Integ						
Field Filtered?		of filtering?				
Weather Condi		==				
Duplicate Take		Ouplicate N				
Triplicate Taken		iplicate Nu				
QA/QC Taken?	Y/N QA	/QC Numb	per:			
	·					

Ref. Number: AS130383				Date: 9 7 14			
Project: Phase 2 ESA				Sample N	umber: M N	1104	
Location: Hydro Kurri Kurri				Sample Number: MW104 Location: Anodewastepile			
HOUNTER	ments						
Organic vapou	urs in well:		ppm	Measureme	ent device:		
Depth to water: (from top of casing) $1-78$ m				Measurement Device:			
Stickup:							
Well Depth (fro	m TOC):			<u> </u>			
Wallshall			WELLET				
Purge Method:							
Volume in Casi	ng:		L	Purge Volu	me:	L	
Start Purge:				End Purge:			
pH TE/	MP (°C)	D.O.	REDOX	EC LITR	ES REMOVED	Comments (colour, odour, etc)	
6.86 18	7	1.55	26	2.59	0.5	G lear	
6.85 18		0.91	20	2.37	Ĭ	brown hinge	
	5.5	0.83	16	2.66	1.5	Orowy Thras	
- 10	,		. 10	2_*()()			
							
State Inches			Ĭ.				
Sampling Meth	od:						
Type: Well / Riv	er / Surface	water / Blar	nk				
Start Sampling:				Finish Sampling:			
Sample Appea	irance, eg d		ent:				
Pre-Sampling:		pH:		Spec.Cond		Temp:	
Pre-Sampling:		pH:		Spec.Cond	:	Temp:	
	E-100 - 100						
Microsoft	A STATE OF THE PROPERTY OF THE PARTY OF THE				i de la companya de l		
Well Head Integ							
Field Filtered?		ot tiltering?					
Weather Condi		Don't 1					
Duplicate Take		Duplicate N		WB			
Triplicate Taken		Triplicate Nu		m BI			
QA/QC Taken?	Y/N G	A/QC Numb	er:				

Ref. Number: AS130383				Date: 10 7 1 4		
Project: Phase 2 ESA				Sample Number: MW105		
Location: Hydro Kurri Kurri				Location: Carbon Plant		
Tible Me	COUR MIRALE					
	vapours in well:		ppm	Measurement device:		
	water: (from top	o of casing)	-02 m	Measurement Device:		
Stickup:						
Well Dept	lh (from TOC):			<u> </u>		
				· · · · · · · · · · · · · · · · · · ·		
Walking						
Purge Me						
Volume in			L L	Purge Volu		L
Start Purg	e:			End Purge:	:	
рН	TEMP (°C)	D.O.	REDOX	ECUS LITE	res removed	Comments (colour, odour, etc)
8.14	15.3	6.79	124	539	0.5	Clear
9.68	15.5	2.44	104	973	1	<u> </u>
9.73	15.5	1.78	101	958	1552	
1 1 -	10.0		1~1	1-20	146 60	
						-
		J				
Removale	· · · · · · · · · · · · · · · · · · ·		THE STATES	(
Sampling						
	I / River / Surfac	e water / Blar	nk			
Start Samp				Finish Sampling:		
	ppearance, eg		nent:			
Pre-Samp		pH:		Spec.Cond:		Temp:
Pre-Sampl	ling:	pH:		Spec.Cond: Temp:		
and the second second	·	26 A. W. W. W.			yan ang	
					in the second	
Well Head		f #111 0				*** * *****
	red ? Y/N Ease	e of filterings				
Weather (D!'	la constantina			
<u>·</u>	Taken? Y/N	Duplicate N				
 :	Taken? Y/N	Triplicate Nu				
QA/QC 10	aken? Y/N (QA/QC Numb	oer:			

Note: Overflow in HTM oil cinea in days before sampling. Sorbent material used to clean up the day before. Some wash down water In top of casing - went down well before sampling

Project: Phase 2 ESA Sample Number: MINIO6						
7.700						
Project: Phase 2 ESA Location: Hydro Kurri Kurri Sample Number: MW06 Location: Carbon Plant						
Field Meditingment						
Organic vapours in well: ppm Measurement device:						
Depth to water: (from top of casing) 4-87 m Measurement Device:						
Stickup:						
Well Depth (from TOC):						
Well Purging						
Purge Method:						
Volume in Casing: L Purge Volume:						
Start Purge: End Purge:						
pH TEMP (°C) D.O. REDOX EC LITRES REMOVED (colour, odour, etc)						
7-39 17-2 11:66 9+ 968 0.5 Joudy 7-40 18.2 11:19 99 1034 1 7-34 19.6 2.86 97 1693 1.5 Clear						
7-40 18.2 11.19 99 1034						
7.34 19.6 2.86 97 1693 1.5 dear						
7.30 199 1.92 95 1706 2						
Sampline						
Sampling Method:						
Type: Well / River / Surface water / Blank						
Start Sampling: Finish Sampling:						
Sample Appearance, eg colour, sediment:						
Pre-Sampling:pH:Spec.Cond:Temp:Pre-Sampling:pH:Spec.Cond:Temp:						
Pre-Sampling: pH: Spec.Cond: Temp:						
Miscolineau Ridio (- America) in the control of th						
Well Head Integrity:						
Field Filtered ? Y / N Ease of filtering?						
Weather Condition:						
Duplicate Taken? Y / N Duplicate Number:						
Triplicate Taken? Y / N Triplicate Number:						
QA/QC Taken? Y / N QA/QC Number:						

Ref. Number: AS130383				Date: 11/7/14		
Project: Phase 2 ESA				Sample Number: M(W107	
Location: Hydro Kurri Kurri				Location: Carbon Plant		
	- [1] (iments					
	vapours in well:		ppm	Measurement device:		
	water: (from to	o of casing)	1.43 m	Measurement Device:		
Stickup:						
Well Dep	th (from TOC):					
	as Land of the Land					
Well Pur Purge Me						
Volume in			L	Purge Volume:		
Start Purg			L	End Purge:	L	
310111 019	<u>. </u>	1	<u> </u>		Commonto	
рН	TEMP (°C)	D.O.	REDOX	ECUS LITRES REMOVED	Comments (colour, odour, etc)	
5.42	15.7	6-13	147	386 0.5	clear	
5.52	15.9	2.46	153	608 1		
5.52	16.0	2.06	153	604 1.5		
Kamaia.	7.			Sh. was		
Sampling	Method:				**************************************	
Type: Well	/ River / Surfac	e water / Bla	nk			
Start Sam	oling:			Finish Sampling:		
Sample A	ppearance, eg	colour, sedin	nent:			
Pre-Samp	ling:	pH:		Spec.Cond:	Temp:	
Pre-Sampl	ling:	pH:		Spec.Cond:	Temp:	
	CONTRACTOR	indigation is the			HAND TO THE PARTY OF THE PARTY	
Well Head	Integrity:				the state of the s	
Field Filter	red? Y/N Eas	e of filtering?		·		
Weather (Condition:					
Duplicate	Duplicate Taken? Y / N Duplicate Number:					
Triplicate 1	Taken? Y/N	Triplicate Nu	ımber:			
QA/QC To	aken? Y/N (QA/QC Numl	oer:			